Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T01:45:51.626Z Has data issue: false hasContentIssue false

Chemical Abundances of Metal-poor stars in Dwarf Galaxies

Published online by Cambridge University Press:  09 May 2016

Kim A. Venn
Affiliation:
Dept. of Physics & Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada email: [email protected]
Pascale Jablonka
Affiliation:
Laboratoire d'astrophysique, EPFL, Observatoire de Sauverny, 1290 Versoix, Switzerland
Vanessa Hill
Affiliation:
Obs. de la Cote d'Azur, 06304 Nice Cedex 4, France
Else Starkenburg
Affiliation:
Leibniz-Institute fur Astrophysik Potsdam, 14482 Potsdam, Germany
Bertrand Lemasle
Affiliation:
Anton Pannekoek Inst. for Astronomy, Univ. of Amsterdam, 1090 GE Amsterdam, Netherlands
Matthew Shetrone
Affiliation:
McDonald Observatory, Univ. of Texas at Austin, Austin TX 78712, USA
Mike Irwin
Affiliation:
Institute of Astronomy, Univ. of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
John Norris
Affiliation:
RSAA, Australian National Univ., Mount Stromlo Observatory, Weston ACT 2611, Australia
David Yong
Affiliation:
RSAA, Australian National Univ., Mount Stromlo Observatory, Weston ACT 2611, Australia
Gerry Gilmore
Affiliation:
Institute of Astronomy, Univ. of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
Stephania Salvadori
Affiliation:
Kapteyn Astronomical Inst., Univ. of Groningen, 9747 AD Groningen, Netherlands
Asa Skuladottir
Affiliation:
Kapteyn Astronomical Inst., Univ. of Groningen, 9747 AD Groningen, Netherlands
Eline Tolstoy
Affiliation:
Kapteyn Astronomical Inst., Univ. of Groningen, 9747 AD Groningen, Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher fraction of carbon-enhanced stars, but we are also finding stars in dwarf galaxies that appear to be iron-rich. These are compared with yields from a variety of supernova predictions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aden, D.et al. 2011, A&A, 525, 153Google Scholar
Feltzing, S.et al. 2009, A&A, 508, 1Google Scholar
Frebel, A. 2010, in Astron. Nachr. 331, 474CrossRefGoogle Scholar
Frebel, A., Simon, J. D., Kirby, E. N. 2014, ApJ, 786, 74CrossRefGoogle Scholar
Frebel, A., Norris, J. E. 2015, ARAA, 53, 631CrossRefGoogle Scholar
Gilmore, G. 2012, in Assembling the Puzzle of the Milky Way, Le Grand-Bournand, France.Google Scholar
Heger, A., Woosley, S. E. 2003, ApJ, 567, 532CrossRefGoogle Scholar
Heger, A., Woosley, S. E. 2010, ApJ, 724, 341Google Scholar
Hendricks, B.et al. 2014, ApJ, 785, 102CrossRefGoogle Scholar
Ivans, I., et al. 2003, ApJ, 592, 906Google Scholar
Iwamoto, N., et al. 2005, Sci, 309, 451Google Scholar
Jablonka, P., et al. 2015, A&A, 583, 67Google Scholar
Jablonka, P., et al. 2016, in prepGoogle Scholar
Kobayashi, C., et al. 2015, ApJ, 804, 24CrossRefGoogle Scholar
Lemasle, B., et al. 2012, A&A, 538, 100Google Scholar
Lemasle, B., et al. 2014, A&A, 572, 88Google Scholar
Norris, J. E., et al. 2010, ApJ, 723, 1632CrossRefGoogle Scholar
Norris, J. E., et al. 2013, ApJ, 762, 28Google Scholar
Norris, J. E., et al. 2016, in prepGoogle Scholar
Revaz, Y., Jablonka, P. 2012, A&A, 538, 82Google Scholar
Roederer, I.U. 2013 AJ, 145, 26CrossRefGoogle Scholar
Romano, D., Bellazzini, M., Starkenburg, E., Leaman, R. 2015, MNRAS, 446, 4220Google Scholar
Salvadori, S., Skuladottir, A., Tolstoy, E. 2015 MNRAS, 454, 1320Google Scholar
Shen, S., Cooke, R. J., Ramirez-Ruiz, E., et al. 2015, ApJ, 807, 115Google Scholar
Simon, J. D.et al. 2015, ApJ, 802, 93Google Scholar
Skuladottir, A., et al. 2015, A&A, 574, 129Google Scholar
Starkenburg, E., et al. 2014, MNRAS, 441, 1217Google Scholar
Starkenburg, E., et al. 2013, MNRAS, 429, 725Google Scholar
Tafelmeyer, M., et al. 2010, A&A, 524, A58Google Scholar
Tolstoy, E., et al. 2009, ARAA, 47, 371Google Scholar
Venn, K. A., et al. 2012, ApJ, 751, 102CrossRefGoogle Scholar
Wanajo, S. 2013, ApJ, 770, 22CrossRefGoogle Scholar
Wanajo, S.et al. 2014, ApJ, 789, 39CrossRefGoogle Scholar
Wise, J.et al. 2012, ApJ, 745, 50Google Scholar