Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T16:24:36.314Z Has data issue: false hasContentIssue false

Census of and Lyα, [Oiii]5007, Hα, and [Ciii]158 μm line emission wiht ∼1000 galaxies at z = 4.9 – 7.0 revealed with Subaru/HSC, Spitzer, and ALMA

Published online by Cambridge University Press:  10 June 2020

Yuichi Harikane*
Affiliation:
Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate rest-frame UV to far-infrared emission lines and SEDs from 1124 galaxies at z = 4.9 – 7.0. Our sample is composed of 1092 Lyα emitters (LAEs) at z = 4.9–7.0 identified by Subaru/Hyper Suprime-Cam (HSC) narrowband surveys and 34 galaxies at z = 5.148–7.508 with deep [Cii]158μm ALMA data. The SEDs clearly show flux excesses in the Spitzer/IRAC 3.6 and 4.5μm bands, suggesting strong rest-frame optical emission lines of [Oiii] and/or Hα. We model the galaxy SEDs with a flexible code combining stellar population and photoionization models (BEAGLE; Chevallard & Charlot 2016), and investigate relations between the emission lines of Lyα, [Oiii], Hα, and [CII]. We find 1) a positive correlation between the rest-frame Hα equivalent width (EW) and the Lyα, EW, ${\EW {^0_Ly\alpha}} $, 2) an interesting turn-over trend that the [Oiii]/Hα flux ratio increases in ${\EW {^0_Ly\alpha}} $ ≃ 0–30 Å, and then decreases out to ${\EW {^0_Ly\alpha}} $ ≃ 130 Å, and 3) a > 99% anti-correlation between a [Cii] luminosity to star-formation rate ratio L[Cii]/SFR) and ${\EW {^0_Ly\alpha}} $. Modeling with BEAGLE also suggests that a simple anticorrelation between ${\EW {^0_Ly\alpha}} $ and metallicity explains self-consistently all of the relations of Lyα, Hα, [Oiii]/Hα, and [Cii] in our study, indicative of detections of very metal-poor (∼0.03Z⊙) galaxies with ${\EW {^0_Ly\alpha}} $ ∼200 Å.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aihara, H., Arimoto, N., Armstrong, R., Arnouts, S., Bahcall, A., Bickerton, S., Bosch, J., Bundy, K., et al. 2018b, PASJ, 70, S4Google Scholar
Bouwens, R. J., Smit, R., Labbé, I., Franx, M., Caruana, J., Oesch, P., Stefanon, M., & Rasappu, N. 2016, ApJ, 831, 17610.3847/0004-637X/831/2/176CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 68210.1086/308692CrossRefGoogle Scholar
Chevallard, J. & Charlot, S. 2016, MNRAS, 462, 141510.1093/mnras/stw1756CrossRefGoogle Scholar
Cowie, L. L., Barger, A. J., & Hu, E. M. 2011, ApJ, 738, 13610.1088/0004-637X/738/2/136CrossRefGoogle Scholar
De Looze, I., Cormier, D., Lebouteiller, V., Madden, S., Baes, M., Bendo, J., Boquien, M., Boselli, A., et al. 2014, A&A, 568, A62Google Scholar
Harikane, Y., Ouchi, M., Shibuya, T., Kojima, T., Zhang, H., Itoh, R., Ono, Y., Higuchi, R., et al. 2018, ApJ, 859, 8410.3847/1538-4357/aabd80CrossRefGoogle Scholar
Inoue, A. K. 2011, MNRAS, 415, 292010.1111/j.1365-2966.2011.18906.xCrossRefGoogle Scholar
Itoh, R., Ouchi, M., Zhang, H., Inoue, A., Mawatari, K., Shibuya, T., Harikane, Y., Ono, Y., et al. 2018, ArXiv e-prints,arXiv:1805.05944Google Scholar
Maiolino, R., Carniani, S., Fontana, A., Vallini, L., Pentericci, L., Ferrara, A., Vanzella, E., Grazian, A., et al. 2015, MNRAS, 452, 5410.1093/mnras/stv1194CrossRefGoogle Scholar
Matthee, J., Sobral, D., Best, P., Khostvan, A., Oteo, I., Bouwens, R., & Rottgering, H. 2017, MNRAS, 465, 363710.1093/mnras/stw2973CrossRefGoogle Scholar
Nagao, T., Murayama, T., Maiolino, R., Marconi, A., Kashikawa, N., Ajiki, M., Hattori, T., Ly, C., et al. 2007, A&A, 468, 877Google Scholar
Nakajima, K., Ellis, R. S., Iwata, I., Inoue, A., Kusakabe, H., Ouchi, M., & Robertson, B. 2016, ApJ, 831, L910.3847/2041-8205/831/1/L9CrossRefGoogle Scholar
Olsen, K., Greve, T. R., Narayanan, D., Thompson, R., Dave, R., Niebla Rios, L., & Stawinski, S. 2017, ApJ, 846, 10510.3847/1538-4357/aa86b4CrossRefGoogle Scholar
Ouchi, M., Ellis, R., Ono, Y., Nakanishi, K., Kohno, K., Momose, R., Kurono, Y., Ashby, M., et al. 2013, ApJ, 778, 10210.1088/0004-637X/778/2/102CrossRefGoogle Scholar
Robertson, B. E., Ellis, R. S., Furlanetto, S. R., & Dunlop, J. S. 2015, ApJ l, 802, L1910.1088/2041-8205/802/2/L19CrossRefGoogle Scholar
Schaerer, D., Boone, F., Zamojski, M., Staguhn, J., Dessauges-Zavadsky, M., Finkelstein, S., & Combes, F. 2015, A&A, 574, A19Google Scholar
Shibuya, T., Ouchi, M., Konno, A., Higuchi, R., Harikane, Y., Ono, Y., Shimasaku, K., Taniguchi, Y., et al. 2018, PASJ, 70, S1410.1093/pasj/psx107CrossRefGoogle Scholar
Shivaei, I., Reddy, N. A., Siana, B., Shapley, A., Kriek, M., Mobasher, B., Freeman, W., Sanders, R., et al. 2017, ArXiv e-prints, https://arxiv.org/abs/1711.00013 arXiv:1711.00013Google Scholar
Trainor, R. F., Strom, A. L., Steidel, C. C., & Rudie, G. C. 2016, ApJ, 832, 17110.3847/0004-637X/832/2/171CrossRefGoogle Scholar
Vallini, L., Gallerani, S., Ferrara, A., Pallottini, A., & Yue, B. 2015, ApJ, 813, 3610.1088/0004-637X/813/1/36CrossRefGoogle Scholar