Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:25:16.077Z Has data issue: false hasContentIssue false

Bubbles and Superbubbles: Observations and Theory

Published online by Cambridge University Press:  01 December 2007

You-Hua Chu*
Affiliation:
Astronomy Department, University of Illinois, 1002 W. Green Street, Urbana, IL 61801, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars inject energy into the surrounding medium and form shell structures. Bubbles are blown by fast stellar winds from individual massive stars, while superbubbles are blown by fast stellar winds and supernova explosions from groups of massive stars. Bubbles and superbubbles share a similar overall structure: a swept-up dense shell with an interior filled by low-density hot gas. Physical properties of a bubble/superbubble can be affected by magnetic field, thermal conduction, turbulent mixing, inhomogeneous ambient medium, etc. I will review recent progresses on observations and compare them to theoretical expectations for (1) swept-up dense shells, (2) hot interiors, and (3) interface between a dense shell and its interior hot gas.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Arthur, S. J., Dyson, J. E., & Hartquist, T. W. 1993, MNRAS, 261, 425CrossRefGoogle Scholar
Arthur, S. J., Henney, W. J., & Dyson, J. E. 1996, A&A, 313, 897Google Scholar
Bamba, A., Ueno, M., Nakajima, H., & Koyama, K. 2004, ApJ, 602, 257CrossRefGoogle Scholar
Bochkarev, N. G. 1988, Nature, 332, 518CrossRefGoogle Scholar
Book, L. G., Chu, Y.-H., & Gruendl, R. A. 2008, ApJS, 175, 165CrossRefGoogle Scholar
Boroson, B., Blair, W. P., Davidsen, A. F. et al. 1997, ApJ, 478, 638CrossRefGoogle Scholar
Braunsfurth, E., & Feitzinger, J. V. 1983, A&A, 127, 113Google Scholar
Burrows, D. N., Singh, K. P., Nousek, J. A., Garmire, G. P., & Good, J. 1993, ApJ, 406, 97CrossRefGoogle Scholar
Cappa, C. E., Arnal, E. M., Cichowolski, S., et al. 2003, in: van der Hucht, K. A., Herrero, A., & Esteban, C. (eds.), A Massive Star Odyssey: From Main Sequence to Supernova, (San Francisco: ASP), Proc. IAU Symp. 212, 596CrossRefGoogle Scholar
Castor, J., McCray, R., & Weaver, R. 1975, ApJ, 200, L107CrossRefGoogle Scholar
Chen, C.-H. R., et al. 2008, submitted to ApJGoogle Scholar
Chu, Y.-H. 2003, in: van der Hucht, K. A., Herrero, A., & Esteban, C. (eds.), A Massive Star Odyssey: From Main Sequence to Supernova, (San Francisco: ASP), Proc. IAU Symp. 212, 585Google Scholar
Chu, Y.-H., Chang, H.-W., Su, Y.-L., & Mac Low, M.-M. 1995, ApJ, 450, 157CrossRefGoogle Scholar
Chu, Y.-H., Gruendl, R. A., & Guerrero, M. A. 2004, in: Meixner, M., Kastner, J. H., Balick, B. & Soker, N. (eds.), Asymmetrical Planetary Nebulae III: Winds, Structure and the Thunderbird, (San Francisco: ASP), ASP Conf. Series, 313, 254Google Scholar
Chu, Y.-H., Guerrero, M. A., Gruendl, R. A., 2001, ApJ, 553, L69CrossRefGoogle Scholar
Chu, Y.-H., Guerrero, M. A., Gruendl, R. A., et al. 2003, ApJ, 599, 1189CrossRefGoogle Scholar
Chu, Y. H., & Lasker, B. M. 1980, PASP, 92, 730CrossRefGoogle Scholar
Chu, Y.-H., & Mac Low, M.-M. 1990, ApJ, 365, 510CrossRefGoogle Scholar
Chu, Y.-H., Mac Low, M.-M., García-Segura, G. et al. 1993, ApJ, 414, 213CrossRefGoogle Scholar
Chu, Y.-H., Wakker, B., Mac Low, M.-M. & García-Segura, G. 1994, AJ, 108, 1696CrossRefGoogle Scholar
Cooper, R. L., Guerrero, M. A., Chu, Y.-H., et al. 2004, ApJ, 605, 751CrossRefGoogle Scholar
Dunne, B. C., Chu, Y.-H., Chen, C.-H. R. et al. 2003, ApJ, 590, 306CrossRefGoogle Scholar
Dunne, B. C., Points, S. D., & Chu, Y.-H. 2001, ApJS, 136, 119CrossRefGoogle Scholar
Dyson, J. E., & de Vries, J. 1972, A&A, 20, 223Google Scholar
Ehlerová, S., & Palouš, J. 2005, Ap&A, 437, 101Google Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2003, ApJ, 594, 888CrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2006, ApJ, 638, 262CrossRefGoogle Scholar
García-Segura, G., & Mac Low, M.-M. 1995, ApJ, 455, 145CrossRefGoogle Scholar
García-Segura, G., Langer, N., & Mac Low, M.-M. 1996a A&A, 316, 133Google Scholar
García-Segura, G., Mac Low, M.-M., & Langer, N. 1996b A&A, 305, 229Google Scholar
Goudis, C., & Meaburn, J. 1978, A&A, 68, 189Google Scholar
Gruendl, R. A., Chu, Y.-H., & Guerrero, M. A. 2004, ApJ, 617, L127CrossRefGoogle Scholar
Gruendl, R. A., Guerrero, M. A., & Chu, Y.-H. 2003, BAAS, 35, 746Google Scholar
Güdel, M., Briggs, K. R., Montmerle, T. et al. 2008, Science, 319, 309CrossRefGoogle Scholar
Hatzidimitriou, D., Stanimirovic, S., Maragoudaki, F. et al. 2005, MNRAS, 360, 1171CrossRefGoogle Scholar
Howarth, I. D. & Phillips, A. P. 1986, MNRAS, 222, 809CrossRefGoogle Scholar
Howk, J. C., Sembach, K. R., Savage, B. D. et al. 2002, ApJ, 569, 214CrossRefGoogle Scholar
Jenkins, E. B. & Meloy, D. A. 1974, ApJ, 193, L121CrossRefGoogle Scholar
Kim, S., Dopita, M. A., Staveley-Smith, L., & Bessell, M. S. 1999, AJ, 118, 2797CrossRefGoogle Scholar
Kregenow, J., Edelstein, J., Korpela, E. J. et al. 2006, ApJ, 644, L167CrossRefGoogle Scholar
Mac Low, M.-M. & McCray, R. 1988, ApJ, 324, 776CrossRefGoogle Scholar
Mac Low, M.-M., McCray, R., & Norman, M. L. 1989, ApJ, 337, 141CrossRefGoogle Scholar
Maddox, L. A., et al. 2008, ApJ submittedGoogle Scholar
Mathews, W. G. 1966, ApJ, 144, 206CrossRefGoogle Scholar
Meaburn, J. 1980, MNRAS, 192, 365CrossRefGoogle Scholar
Moffat, A. F. J. & Robert, C. 1994, ApJ, 421, 310CrossRefGoogle Scholar
Nazé, Y., Chu, Y.-H., Points, S. D. et al. 2001, AJ, 122, 921CrossRefGoogle Scholar
Nazé, Y., Chu, Y.-H., Guerrero, M. A. et al. 2002, AJ, 124, 3325CrossRefGoogle Scholar
Nichols-Bohlin, J. & Fesen, R. A. 1993, AJ, 105, 672CrossRefGoogle Scholar
Oey, M. S. 1996, ApJ, 467, 666CrossRefGoogle Scholar
Oey, M. S. & Clarke, C. J. 1997, MNRAS, 289, 570CrossRefGoogle Scholar
Oey, M. S. & García-Segura, G. 2004, ApJ, 613, 302CrossRefGoogle Scholar
Oey, M. S. & Smedley, S. A. 1998, AJ, 116, 1263CrossRefGoogle Scholar
Parizot, E., Marcowith, A., van der Swaluw, E., et al. 2004, Ap&A, 424, 747Google Scholar
Pikel'Ner, S. B. 1968, ApL, 2, 97Google Scholar
Pikel'Ner, S. B. & Shcheglov, P. V. 1969, Soviet Astronomy, 12, 757Google Scholar
Pittard, J. M., Dyson, J. E., & Hartquist, T. W. 2001a A&A, 367, 1000Google Scholar
Pittard, J. M., Hartquist, T. W., & Dyson, J. E. 2001b A&A, 373, 1043Google Scholar
Sankrit, R. & Dixon, W. V. D. 2007, PASP, 119, 284CrossRefGoogle Scholar
Smith, D. A. & Wang, Q. D. 2004, ApJ, 611, 881CrossRefGoogle Scholar
Staveley-Smith, L., Sault, R. J., Hatzidimitriou, D. et al. 1997, MNRAS, 289, 225CrossRefGoogle Scholar
Steigman, G., Strittmatter, P. A., & Williams, R. E. 1975, ApJ, 198, 575CrossRefGoogle Scholar
Strickland, D. K. & Stevens, I. R. 1998, MNRAS, 297, 747CrossRefGoogle Scholar
Tomisaka, K. 1992, PASJ, 44, 177Google Scholar
Townsley, L. K., Feigelson, E. D., Montmerle, T. et al. 2003, ApJ, 593, 874CrossRefGoogle Scholar
Weaver, R., McCray, R., Castor, J. et al. 1977, ApJ, 218, 377CrossRefGoogle Scholar
Wolk, S. J., Bourke, T. L., Smith, R. K. et al. 2002, ApJ, 580, L161CrossRefGoogle Scholar
Wrigge, M. 1999, Ap&A, 343, 599Google Scholar
Wrigge, M., Wendker, H. J., & Wisotzki, L. 1994, Ap&A, 286, 219Google Scholar