Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T11:33:11.163Z Has data issue: false hasContentIssue false

AGN accretion disk physics using H2O megamasers

Published online by Cambridge University Press:  16 July 2018

Dominic Pesce
Affiliation:
Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904, USA National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
James Braatz
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
James Condon
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
Feng Gao
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
Christian Henkel
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany Astronomy Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Violette Impellizzeri
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA Joint Alma Office, Alsonso de Cordova 3107, Vitacura, Santiago, Chile
Eugenia Litzinger
Affiliation:
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany Dr. Remeis Sternwarte & ECAP, Universität Erlangen-Nürnberg, Sternwartstrasse 7, D-96049 Bamberg, Germany
K. Y. Lo
Affiliation:
National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
Mark Reid
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many accretion disks surrounding supermassive black holes in nearby AGN are observed to host 22 GHz water maser activity. We have analyzed single-dish 22 GHz spectra taken with the GBT to identify 32 such “Keplerian disk systems,” which we used to investigate maser excitation and explore the possibility of disk reverberation. Our results do not support a spiral shock model for population inversion in these disks, and we find that any reverberating signal propagating radially outwards from the AGN must constitute <10% of the total observed maser variability. Additionally, we have used ALMA to begin exploring the variety of sub-mm water megamasers that are also predicted, and in the case of the 321 GHz transition found, to be present in these accretion disks. By observing multiple masing transitions within a single system, we can better constrain the physical conditions (e.g., gas temperature and density) in the accretion disk.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Argon, A. L., Greenhill, L. J., Reid, M. J., Moran, J. M., & Humphreys, E. M. L., 2007, ApJ, 659, 1040Google Scholar
Braatz, J., Reid, M., Kuo, C.-Y., et al. 2013, Advancing the Physics of Cosmic Distances, 289, 255Google Scholar
Bragg, A. E., Greenhill, L. J., Moran, J. M., & Henkel, C., 2000, ApJ, 535, 73Google Scholar
Gao, F., Braatz, J. A., Reid, M. J., et al. 2016, ApJ, 817, 128Google Scholar
Gray, M. D., Baudry, A., Richards, A. M. S., et al. 2016, MNRAS, 456, 374Google Scholar
Hagiwara, Y., Miyoshi, M., Doi, A., & Horiuchi, S., 2013, ApJL, 768, L38Google Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Nature, 400, 539Google Scholar
Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., Moran, J. M., & Argon, A. L., 2008, ApJ, 672, 800816Google Scholar
Kuo, C. Y., Braatz, J. A., Reid, M. J., et al. 2013, ApJ, 767, 155CrossRefGoogle Scholar
Kuo, C. Y., Braatz, J. A., Lo, K. Y., et al. 2015, ApJ, 800, 26Google Scholar
Maoz, E. & McKee, C. F., 1998, ApJ, 494, 218Google Scholar
Neufeld, D. A. & Melnick, G. J., 1991, ApJ, 368, 215CrossRefGoogle Scholar
Pesce, D. W., Braatz, J. A., Condon, J. J., et al. 2015, ApJ, 810, 65Google Scholar
Pesce, D. W., Braatz, J. A., & Impellizzeri, C. M. V., 2016, ApJ, 827, 68Google Scholar
Reid, M. J., Braatz, J. A., Condon, J. J., et al. 2013, ApJ, 767, 154Google Scholar
Yates, J. A., Field, D., & Gray, M. D., 1997, MNRAS, 285, 303Google Scholar