No CrossRef data available.
Article contents
Two boundedness criteria for a class of operators on Musielak–Orlicz Hardy spaces and applications
Published online by Cambridge University Press: 16 July 2019
Abstract
Let φ : ℝn × [0, ∞) → [0, ∞) satisfy that φ(x, · ), for any given x ∈ ℝn, is an Orlicz function and φ( · , t) is a Muckenhoupt A∞ weight uniformly in t ∈ (0, ∞). The (weak) Musielak–Orlicz Hardy space Hφ(ℝn) (WHφ(ℝn)) generalizes both the weighted (weak) Hardy space and the (weak) Orlicz Hardy space and hence has wide generality. In this paper, two boundedness criteria for both linear operators and positive sublinear operators from Hφ(ℝn) to Hφ(ℝn) or from Hφ(ℝn) to WHφ(ℝn) are obtained. As applications, we establish the boundedness of Bochner–Riesz means from Hφ(ℝn) to Hφ(ℝn), or from Hφ(ℝn) to WHφ(ℝn) in the critical case. These results are new even when φ(x, t): = Φ(t) for all (x, t) ∈ ℝn × [0, ∞), where Φ is an Orlicz function.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 63 , Issue 1 , February 2020 , pp. 13 - 35
- Copyright
- Copyright © Edinburgh Mathematical Society 2019