Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:32:57.819Z Has data issue: false hasContentIssue false

Two boundedness criteria for a class of operators on Musielak–Orlicz Hardy spaces and applications

Published online by Cambridge University Press:  16 July 2019

Xiaoli Qiu
Affiliation:
College of Mathematics and System Sciences, Xinjiang University, Urumqi830046, P. R. China ([email protected]; [email protected]; [email protected])
Baode Li
Affiliation:
College of Mathematics and System Sciences, Xinjiang University, Urumqi830046, P. R. China ([email protected]; [email protected]; [email protected])
Xiong Liu
Affiliation:
College of Mathematics and System Sciences, Xinjiang University, Urumqi830046, P. R. China ([email protected]; [email protected]; [email protected])
Bo Li*
Affiliation:
Center for Applied Mathematics, Tianjin University, Tianjin300072, P. R. China ([email protected])
*
*Corresponding author.

Abstract

Let φ : ℝn × [0, ∞) → [0, ∞) satisfy that φ(x, · ), for any given x ∈ ℝn, is an Orlicz function and φ( · , t) is a Muckenhoupt A weight uniformly in t ∈ (0, ∞). The (weak) Musielak–Orlicz Hardy space Hφ(ℝn) (WHφ(ℝn)) generalizes both the weighted (weak) Hardy space and the (weak) Orlicz Hardy space and hence has wide generality. In this paper, two boundedness criteria for both linear operators and positive sublinear operators from Hφ(ℝn) to Hφ(ℝn) or from Hφ(ℝn) to WHφ(ℝn) are obtained. As applications, we establish the boundedness of Bochner–Riesz means from Hφ(ℝn) to Hφ(ℝn), or from Hφ(ℝn) to WHφ(ℝn) in the critical case. These results are new even when φ(x, t): = Φ(t) for all (x, t) ∈ ℝn × [0, ∞), where Φ is an Orlicz function.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Álvarez, J. and Milman, M., H p continuity properties of Calderón–Zygmund-type operators, J. Math. Anal. Appl. 118(1) (1986), 6379.CrossRefGoogle Scholar
2.Bui, T. A., Cao, J., Ky, L. D., Yang, D. and Yang, S., Musielak–Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Anal. Geom. Metr. Spaces 1(2013), 69129.CrossRefGoogle Scholar
3.Diening, L., Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129(8) (2005), 657700.CrossRefGoogle Scholar
4.Diening, L., Hästö, P. A. and Roudenko, S., Function spaces of variable smoothness and integrability, J. Funct. Anal. 256(6) (2009), 17311768.CrossRefGoogle Scholar
5.Fan, X., He, J., Li, B. and Yang, D., Real-variable characterizations of anisotropic product Musielak–Orlicz Hardy spaces, Sci. China Math. 60(11) (2017), 20932154.CrossRefGoogle Scholar
6.Fefferman, R. A. and Soria, F., The space weak H 1, Studia Math. 85(1) (1987), 116.CrossRefGoogle Scholar
7.Fefferman, C. L. and Stein, E. M., H p spaces of several variables, Acta Math. 129(3–4) (1972), 137193.CrossRefGoogle Scholar
8.Grafakos, L., Modern Fourier analysis, 2nd edn, Graduate Texts in Mathematics, Volume 250 (Springer, New York, 2009).CrossRefGoogle Scholar
9.Hou, S., Yang, D. and Yang, S., Lusin area function and molecular characterizations of Musielak–Orlicz Hardy spaces and their applications, Commun. Contemp. Math. 15(6) (2013), 1350029.CrossRefGoogle Scholar
10.Janson, S., Generalizations of Lipschitz spaces and an applications to Hardy spaces and bounded mean oscillation, Duke Math. J. 47(4) (1980), 959982.CrossRefGoogle Scholar
11.Jiang, R. and Yang, D., New Orlicz–Hardy spaces associated with divergence form elliptic operators, J. Funct. Anal. 258(4) (2010), 11671224.CrossRefGoogle Scholar
12.Jiang, R. and Yang, D., Predual spaces of Banach completions of Orlicz–Hardy spaces associated with operators, J. Fourier Anal. Appl. 17(1) (2011), 135.10.1007/s00041-010-9123-8CrossRefGoogle Scholar
13.Jiang, R. and Yang, D., Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates, Commun. Contemp. Math. 13(2) (2011), 331373.CrossRefGoogle Scholar
14.Johnson, R. L. and Neugebauer, C. J., Homeomorphisms preserving A p, Rev. Mat. Iberoam. 3(2) (1987), 249273.CrossRefGoogle Scholar
15.Ky, L. D., New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators, Integral Equations Operator Theory 78(1) (2014), 115150.CrossRefGoogle Scholar
16.Latter, R. H., A characterization of H p in terms of atoms, Studia Math. 62(1) (1978), 93101.CrossRefGoogle Scholar
17.Lee, M.-Y., Weighted norm inequalities of Bochner–Riesz means, J. Math. Anal. Appl. 324(2) (2006), 12741281.10.1016/j.jmaa.2005.07.085CrossRefGoogle Scholar
18.Li, B., Fan, X. and Yang, D., Littlewood–Paley characterizations of anisotropic Hardy spaces of Musielak–Orlicz type, Taiwanese J. Math. 19(1) (2015), 279314.CrossRefGoogle Scholar
19.Li, B., Fan, X., Fu, Z. and Yang, D., Molecular characterization of anisotropic Musielak–Orlicz Hardy spaces and their applications, Acta Math. Sin. (Engl. Ser.) 32(11) (2016), 13911414.CrossRefGoogle Scholar
20.Li, Bo, Liao, M. and Li, Ba., Boundedness of Marcinkiewicz integrals with rough kernels on Musielak–Orlicz Hardy spaces, J. Inequal. Appl. 2017(1) (2017), 228.CrossRefGoogle ScholarPubMed
21.Liang, Y., Huang, J. and Yang, D., New real-variable characterizations of Musielak–Orlicz Hardy spaces, J. Math. Anal. Appl. 395(1) (2012), 413428.CrossRefGoogle Scholar
22.Liang, Y. and Yang, D., Musielak–Orlicz Campanato spaces and applications, J. Math. Anal. Appl. 406(1) (2013), 307322.CrossRefGoogle Scholar
23.Liang, Y., Nakai, E., Yang, D. and Zhang, J., Boundedness of intrinsic Littlewood-Paley functions on Musielak–Orlicz Morrey and Campanato spaces, Banach J. Math. Anal. 8(1) (2014), 221268.CrossRefGoogle Scholar
24.Liang, Y., Yang, D. and Jiang, R., Weak Musielak–Orlicz Hardy spaces and applications, Math. Nachr. 289(5–6) (2016), 634677.CrossRefGoogle Scholar
25.Liu, H., The weak H p spaces on homogenous groups, in Harmonic analysis (Tianjin, 1988), Lecture Notes in Mathematics, Volume 1984, pp. 113–118 (Springer, Berlin, 1991).Google Scholar
26.Liu, J., Yang, D. and Yuan, W., Anisotropic Hardy–Lorentz spaces and their applications, Sci. China Math. 59(9) (2016), 16691720.CrossRefGoogle Scholar
27.Lu, S., Four lectures on real H p spaces (World Scientific Publishing, River Edge, NJ, 1995).CrossRefGoogle Scholar
28.Peloso, M. M. and Secco, S., Boundedness of Fourier integral operators on Hardy spaces, Proc. Edinb. Math. Soc. (2) 51(2) (2008), 443463.CrossRefGoogle Scholar
29.Quek, T. and Yang, D., Calderón–Zygmund-type operators on weighted weak Hardy spaces over ℝn, Acta Math. Sin. (Engl. Ser.) 16(1) (2000), 141160.CrossRefGoogle Scholar
30.Rolewicz, S. M., Linear spaces, 2nd edn (PWN Polish Scientific Publishers, D. Reidel Publishing Co., Warsaw, Dordrecht, 1984).Google Scholar
31.Sato, S., Weak type estimates for some maximal operators on the weighted Hardy spaces, Ark. Mat. 33(2) (1995), 377384.CrossRefGoogle Scholar
32.Sato, S., Divergence of the Bochner–Riesz means in the weighted Hardy spaces, Studia Math. 118(3) (1996), 261275.CrossRefGoogle Scholar
33.Stein, E. M. and Weiss, G., On the theory of harmonic functions of several variables. I. The theory of H p-spaces, Acta Math. 103(1960), 2562.CrossRefGoogle Scholar
34.Stein, E. M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, Volume 32 (Princeton University Press, Princeton, NJ, 1971).Google Scholar
35.Strömberg, J.-O. and Torchinsky, A., Weighted Hardy spaces, Lecture Notes in Mathematics, Volume 1381 (Springer-Verlag, Berlin, 1989).CrossRefGoogle Scholar
36.Wang, H., A new estimate for Bochner–Riesz operators at the critical index on weighted Hardy spaces, Anal. Theory Appl. 29(3) (2013), 221233.Google Scholar
37.Yang, D., Yuan, W. and Zhuo, C., Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces, Rev. Mat. Complut. 27(1) (2014), 93157.CrossRefGoogle Scholar
38.Yang, D., Liang, Y. and Ky, L. D., Real-variable theory of Musielak–Orlicz Hardy spaces, Lecture Notes in Mathematics, Volume 2182 (Springer-Verlag, Cham, 2017).CrossRefGoogle Scholar
39.Zhang, H., Qi, C. and Li, B., Anisotropic weak Hardy spaces of Musielak–Orlicz type and their applications, Front. Math. China 12(4) (2017), 9931022.CrossRefGoogle Scholar