Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T23:55:37.772Z Has data issue: false hasContentIssue false

FUNCTION-ORIENTED DEVELOPMENT OF COMPLEX MECHATRONIC PRODUCTS FROM AN HTO PERSPECTIVE: A SYSTEMATIC LITERATURE REVIEW

Published online by Cambridge University Press:  19 June 2023

Ekin Uhri*
Affiliation:
Institute for Information Management in Mechanical Engineering, RWTH Aachen University, Aachen, Germany; BMW Group, Department of Total Vehicle Development, Munich, Germany
Ingrid Isenhardt
Affiliation:
Institute for Information Management in Mechanical Engineering, RWTH Aachen University, Aachen, Germany;
*
Uhri, Ekin, RWTH Aachen, Germany, [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A component-orientated approach is commonplace in the automotive industry where the development focus lies on components. However, current challenges in the industry necessitates a mindset change in the development. Shifting the perspective from the components to functions can help with changing requirements, manage increasing complexity, support cross-disciplinary development, and foster innovation. To successfully implement this approach, it is essential to address not only the technical aspects of the solution, but also the human and organizational aspects affecting the process for its long-term success.

This paper investigates the function-oriented development methods of complex mechatronic products. A systematic literature review is conducted to analyse the current state of research. The existing function-oriented development approaches are summarized, the technological, human, and organizational perspectives are analysed, and the research gaps are highlighted. It is concluded that while function-orientation gains significance in industry and academia, and the importance of human and organizational factors are highlighted in the literature, they are not yet widely considered within the current function-oriented approaches.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Aksoy, G., Raulf, C. and Vietor, T. (2021), “A Model-Based Design Method for the Correlation between Customer Feedback and Technical Design Parameters in the Context of Systems Engineering”, Modelling, Vol. 2 No. 4, pp. 795820. 10.3390/modelling2040042.*CrossRefGoogle Scholar
Albers, A., Fahl, J., Hirschter, T., Haag, S., Hunemeyer, S. and Staiger, T. (2020), “Defining, Formulating and Modeling Product Functions in the Early Phase in the Model of PGE — Product Generation Engineering”, in 2020 IEEE International Symposium on Systems Engineering (ISSE), 12-14.10.2020, Vienna, Austria, IEEE, pp. 110. 10.1109/isse49799.2020.9272222.*CrossRefGoogle Scholar
Albers, A., Haug, F., Fahl, J., Hirschter, T., Reinemann, J. and Rapp, S. (2018), “Customer-oriented product development: supporting the development of the complete vehicle through the systematic use of engineering generations”, in 2018 IEEE International Systems Engineering Symposium (ISSE), 1-3.10.2018, Rome, Italy, IEEE, pp. 18. 10.1109/SysEng.2018.8544391.*CrossRefGoogle Scholar
Albers, A., Haug, F., Heitger, N., Fahl, J., Hirschter, T. and Binz, H., Bertsche, B., Bauer, W., Riedel, O., Spath, D., Roth, D. (2019a), “Entwicklungsgenerationen zur Steuerung der PGE - Produktgenerationsentwicklung: Von der Bauteil- zur Funktionsorientierung in der Automobilentwicklung”, in Stuttgarter Symposium für Produktentwicklung SSP 2019, 15-16.05.2019, Stuttgart, Stuttgart Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, Stuttgart, pp. 253262. 10.18419/opus-10394.*Google Scholar
Albers, A., Revfi, S., Kraus, F. and Spadinger, M. (2019b), “Function-based benchmarking to identify competitor-based lightweight design potentials”, in Procedia CIRP, 08-10.05.2019, Póvoa de Varzim, Portugal, Elsevier, pp. 526531. 10.1016/j.procir.2019.04.231.*CrossRefGoogle Scholar
Allmann, C. (2017), “Anforderungen auf Kundenfunktionsebene in der Automobilindustrie”, paper presented at SE 2007 – Die Konferenz rund um Softwaretechnik, 03.2017, Hamburg.*Google Scholar
Cohrs, M., Klimke, S. and Zachmann, G. (2014), “Streamlining Function-Oriented Development by Consistent Integration of Automotive Function Architectures with CAD Models”, Computer-Aided Design and Applications, Vol. 11 No. 4, pp. 399410. 10.1080/16864360.2014.881182.*CrossRefGoogle Scholar
Denger, A., Fritz, J., Kissel, M., Parvan, M. and Zingel, C. (2012), “Potentiale einer funktionsorientierten Lenkung mechatronischer Produkte in der Automobilindustrie”, in Tag des Systems Engineering (TdSE 2012), 16-18.11.2012, Paderborn, Germany, Hanser, 405416. 10.3139/9783446436039.040.*CrossRefGoogle Scholar
Ehring, D., Pluhnau, R., Nagarajah, A. and Ivanov, V., Pavlenko, I., Trojanowska, J., Zajac, J., Perakovic, D. (2020), “Concept Development of a Consistently Traceable Process and System Solution for Ensuring the Requirements of Engineering and Functional Safety”, in Advances in Design, Simulation and Manufacturing III, 9-12.06.2020, Kharkiv, Ukraine, Springer International Publishing, pp. 233242. 10.1007/978-3-030-50794-7_23.*Google Scholar
Eklund, J. (2000), “Towards a Framework for Quality of Interactions between Humans, Technology and Organization”, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 44 No. 12, 2-463-2-466. 10.1177/154193120004401207.CrossRefGoogle Scholar
Ernst, J. (2014), “Humanfaktoren in der Produktentwicklung”, in Eigner, M., Roubanov, D. and Zafirov, R. (Eds.), Modellbasierte virtuelle Produktentwicklung, Springer Berlin Heidelberg; Imprint: Springer Vieweg, Berlin, Heidelberg, pp. 349367. 10.1007/978-3-662-43816-9_15.CrossRefGoogle Scholar
Friedrich, M.O. (2011), “Funktionsorientiertes Konzept Zur Unterstützung Früher Phasen der Produktentwicklung in der Informationstechnik”, PhD Thesis, Technical University of Munich, 2011.*Google Scholar
Gaag, A. (2010), “Entwicklung einer Ontologie zur funktionsorientierten Lösungssuche in der Produktentwicklung”, PhD Thesis, Technical University of Munich, 2010.*Google Scholar
Gaag, A., Kohn, A. and Lindemann, U. (2009), “Function-based solution retrieval and semantic search in mechanical engineering”, in Proceedings of ICED 09, the 17th International Conference on Engineering Design, 24-27.08.2009, Palo Alto, CA, USA, Cambridge University Press, Cambridge, pp. 147158.*Google Scholar
Husung, S., Weber, C. and Mahboob, A. (2022), “Model-Based Systems Engineering: A New Way for Function-Driven Product Development”, in Krause, D. and Heyden, E. (Eds.), Design Methodology for Future Products: Data Driven, Agile and Flexible, 1st ed., Springer, Cham, pp. 221241. 10.1007/978-3-030-78368-6_12.*CrossRefGoogle Scholar
Jacobs, G., Konrad, C., Berroth, J., Zerwas, T., Höpfner, G. and Spütz, K. (2022), “Function-oriented model-based product development”, in Krause, D. and Heyden, E. (Eds.), Design Methodology for Future Products, Springer, pp. 243263. 10.1007/978-3-030-78368-6_13.*CrossRefGoogle Scholar
Kaiser, B., Augustin, B. and Baumann, C. (2013), “Von der komponenten- zur funktionsorientierten Entwicklung in der funktionalen Sicherheit”, paper presented at Elektronik im Fahrzeug, 16.10.2013, Baden-Baden, Germany.*Google Scholar
Lindemann, U., Maurer, M. and Braun, T. (2009), “Complexity in the context of product design”, in Lindemann, U., Maurer, M. and Braun, T. (Eds.), Structural complexity management: An approach for the field of product design, Springer, Berlin, pp. 2142. 10.1007/978-3-540-87889-6_2.CrossRefGoogle Scholar
Politze, D.P. and Bathelt, J. (2009), “Exploitation method for functional product requirements an integrated function oriented approach”, in IEEE 2009 International Conference on Mechatronics, ICM 2009, 14-17.04.2009, Malaga, Spain, IEEE, pp. 16. 10.1109/ICMECH.2009.4957186.*CrossRefGoogle Scholar
Politze, D.P. and Dierssen, S. (2008), “A functional model for the function oriented description of customer-related functions of high-variant products”, paper presented at NordDesign 2008 Conference, 21.-23.08.2008, Tallinn, Estonia.*Google Scholar
Politze, D.P., Dierssen, S. and Roy, R., S.E. (2009), “A criteria-based measure of similarity between product functionalities”, in Competitive Design - Proceedings of the 19th CIRP Design Conference, 30-31.03.2009, Cranfield University, UK, Cranfield University Press, pp. 99103.*Google Scholar
Renner, I. (2007), “Methodische Unterstützung funktionsorientierter Baukastenentwicklung am Beispiel Automobil”, PhD, Lehrstuhl für Produktentwicklung, TUM, München, 21 May.*Google Scholar
Schuh, G., Dolle, C., Barg, S., Kuhn, M. and Breunig, S. (2018), “Efficient Modular Product Platform Design of Mechatronic Systems”, in 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 16-19.12.2018, Bangkok, Thailand, IEEE, pp. 13911395. 10.1109/ieem.2018.8607714.*CrossRefGoogle Scholar
Schuh, G., Dölle, C., Breunig, S. and Becker, A. (2019), “Gestaltungsmodell zur Steigerung der Wirtschaftlichkeit von Baukästen mechatronischer Produkte”, Zeitschrift für wirtschaftlichen Fabrikbetrieb, No. 6, pp. 367371.*CrossRefGoogle Scholar
Spütz, K., Jacobs, G., Konrad, C. and Wyrwich, C. (2021), “Integration of Production and Cost Models in Model-Based Product Development”, Open Journal of Social Sciences, Vol. 09 No. 12, pp. 5364. 10.4236/jss.2021.912004.*CrossRefGoogle Scholar
Stark, R., Hayka, H., Figge, A. and Woll, R. (2010), “Interdisciplinary function-oriented design and verification for the development of mechatronical products”, in Global Product Development - Proceedings of the 20th CIRP Design Conference, 19-21.04.2010, Nantes, France, Springer. 10.1007/978-3-642-15973-2-29.*Google Scholar
Weber, J. (2009), “E/E System Development”, in Weber, J. (Ed.), Automotive development processes: Processes for successful customer-oriented vehicle development, Springer, Dordrecht, New York, pp. 5378. 10.1007/978-3-642-01253-2_5.CrossRefGoogle Scholar
Wyrwich, C., Jacobs, G., Sputz, K., Zerwas, T., Konrad, C. and Binz, H., Bertsche, B., Spath, D., Roth, D. (2021), “Integration von Produktportfolios in die funktionsorientierte modellbasierte Systementwicklung”, in Stuttgarter Symposium fur Produktentwicklung 2021, 20.05.2021, Stuttgart, Stuttgart Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, Stuttgart, pp. 211222. 10.18419/opus-11478.*Google Scholar
Xiao, Y. and Watson, M. (2019), “Guidance on Conducting a Systematic Literature Review”, Journal of Planning Education and Research, Vol. 39 No. 1, pp. 93112. 10.1177/0739456X17723971.CrossRefGoogle Scholar
Yusof, M.M., Kuljis, J., Papazafeiropoulou, A. and Stergioulas, L.K. (2008), “An evaluation framework for Health Information Systems: human, organization and technology-fit factors (HOT-fit)”, International journal of medical informatics, Vol. 77 No. 6, pp. 386398. 10.1016/j.ijmedinf.2007.08.011.CrossRefGoogle ScholarPubMed
Zerwas, T., Jacobs, G., Spütz, K., Höpfner, G., Drave, I., Berroth, J., Guist, C., Konrad, C., Rumpe, B. and Kohl, J. (2021), “Mechanical concept development using principle solution models”, IOP Conference Series: Materials Science and Engineering, Vol. 1097. 10.1088/1757-899X/1097/1/012001.*CrossRefGoogle Scholar
Zhang, Y., Röder, J., Jacobs, G., Berroth, J. and Höpfner, G. (2022), “Virtual Testing Workflows Based on the Function-Oriented System Architecture in SysML: A Case Study in Wind Turbine Systems”, Wind, Vol. 2 No. 3, pp. 599616. 10.3390/wind2030032.*CrossRefGoogle Scholar