Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T06:47:03.377Z Has data issue: false hasContentIssue false

AN ANALYSIS OF SCALING METHODS FOR STRUCTURAL COMPONENTS IN THE CONTEXT OF SIZE EFFECTS AND NONLINEAR PHENOMENA

Published online by Cambridge University Press:  11 June 2020

O. Altun*
Affiliation:
Leibniz Universität Hannover, Germany
P. Wolniak
Affiliation:
Leibniz Universität Hannover, Germany
I. Mozgova
Affiliation:
Leibniz Universität Hannover, Germany
R. Lachmayer
Affiliation:
Leibniz Universität Hannover, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Similitude theory helps engineers to investigate system properties and behaviour with scaling methods. The application of such methods reduces the time for product development and production of prototypes. With increasing component size, the impact of size effects and nonlinear phenomena becomes more important in reduced scale model testing. The aim of this paper is to provide an overview of the scaling methods and their applicability with regard to size effects and nonlinear phenomena as well as a procedure to support the selection of a suitable method for the scaling task of structures.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Berbenni, S., Favier, V. and Berveiller, M. (2007), “Impact of the grain size distribution on the yield stress of heterogeneous materials”, International Journal of Plasticity, Vol. 23 No. 1, pp. 114142, https://doi.org/10.1016/j.ijplas.2006.03.004CrossRefGoogle Scholar
Behrens, B.-A. et al. (2014), “Towards a definition of large scale products”, Production Engineering Research Development, Vol. 8 No. 1-2, pp. 153164, https://doi.org/10.1007/s11740-013-0503-1CrossRefGoogle Scholar
Bridgman, P.W. (1932), Theorie der physikalischen Dimensionen, Teubner, Leipzig.Google Scholar
Casaburo, A. et al. (2019), “A Review of Similitude Methods for Structural Engineering”, Applied Mechanics Reviews, Vol. 71 No. 3, https://doi.org/10.1115/1.4043787CrossRefGoogle Scholar
Cho, U. et al. (2005), “An Advanced Method to Correlate Scale Models With Distorted Configurations”, Journal of Mechanical Design, Vol. 127, pp. 7985, https://doi.org/10.1115/1.1825044CrossRefGoogle Scholar
Coutinho, C.P., José Baptista, A. and Rodrigues, J.D. (2016), “Reduced scale model based on similitude theory: A review up to 2015”, Engineering Structures, Vol. 119, pp. 8194, https://doi.org/10.1016/j.engstruct.2016.04.016CrossRefGoogle Scholar
Deimel, M. (2007), Ähnlichkeitskennzahlen zur systematischen Synthese, Beurteilung und Optimierung von Konstruktionslösungen, [PhD thesis], Technische Universität Braunschweig.Google Scholar
De Rosa, S., Franco, F. and Mace, B.R. (2005), “An asymptotic scaled modal analysis for the response of a 2-plate assembly”, AIDAA Conference 2005 (18th National Congress), Volterra, Italy, 19-22 September, 2005. https://doi.org/10.13140/RG.2.1.2072.6884CrossRefGoogle Scholar
Diemar, A., Thmuser, R. and Bergmann, J.W. (2004), “Statistischer Größeneinfluss und Bauteilfestigkeit. Eine neue Methode zur Ermittlung von Spannungsintegralen”, Materials Testing, Vol. 46 No. 1-2, pp. 1621, https://doi.org/10.3139/120.100559CrossRefGoogle Scholar
Dutson, A.J. and Wood, K.L. (2002), Foundations and Application of the Empirical Similitude Method (ESM). [online] ResearchGate. Available at: https://www.researchgate.net/publication/270158686_FOUND ATIONS_AND_APPLICATIONS_OF_THE_EMPIRICAL_SIMILITUDE_METHOD_ESM.Google Scholar
Dutson, A.J. (2002), Functional Prototyping Through Advanced Similitude Techniques, [PhD thesis], Faculty of the Graduate School of The University of Texas, USA.Google Scholar
Goodier, J.N. and Thomson, W.T. (1944), “Applicability of similarity principles to structural models”, Technical Report NACA Technical Report CR-4068, National Advisory Committee for Aeronautics.Google Scholar
Gebhardt, C. (2018), Praxisbuch FEM mit Ansys Workbench: Einführung in die lineare und nichtlineare Mechanik, Hanser Verlag, München. https://doi.org/10.3139/9783446439566CrossRefGoogle Scholar
Henning, M. and Vehoff, H. (2008), Saarbrücker Reihe Materialwissenschaft und Werkstofftechnik. Bd. 10: Größeneffekte auf die mechanischen Eigenschaften—Experiment und Simulation, Shaker Verlag, Aachen.Google Scholar
Huster, J. (1988), Lebensdauervorhersage bei Schwingbeanspruchung unter Berücksichtigung der Mikrorissausbreitung, [PhD thesis], Universität der Bundeswehr München, Germany.Google Scholar
Kasivitamnuay, J. and Singhatanadgid, P. (2005), “Application of an energy theorem to derive a scaling law for structural behaviors”, Thammasa Itn t. J. Sc. Tech., Vol. 10 No. 4, pp. 3340.Google Scholar
Kline, S.J. (1986), Similitude and Approximate Theory, McGraw-Hill, New York.CrossRefGoogle Scholar
Kloos, K.H. et al. (1979), Übertragbarkeit von Probestab-Schwingfestigkeitseigenschaften auf Bauteile, Düsseldorf, Germany, Verein Deutscher Ingenieure.Google Scholar
Knothe, K. and Wessels, H. (2017), Finite Elemente: Eine Einführung für Ingenieure, Springer Vieweg, Berlin.CrossRefGoogle Scholar
Köhler, J. (1975), Statistischer Größeneinfluss im Dauerschwingverhalten ungekerbter und gekerbter metallischer Bauteile, [PhD thesis], Technische Universität München, Germany.Google Scholar
Koschorrek, R. (2007), Systematisches Konzipieren mittels Ähnlichkeitsmethoden am Beispiel von PKW Karosserien, [PhD thesis], Technische Universität Braunschweig, Germany.Google Scholar
Krä, C. (1988), Beschreibung des Lebensdauerverhaltens gekerbter Proben unter Betriebsbelastungen auf der Basis des statistischen Größeneinflusses, [PhD thesis], Universität der Bundeswehr München, Germany.Google Scholar
Krä, C. and Heckel, K. (1989), “Übertragung von Schwingfestigkeitswerten mit dem statistischen Größeneinfluss”, Material Science and Engineering Technology, Vol. 20 No. 8, pp. 255261, https://doi.org/10.1002/mawe.19890200803Google Scholar
Luo, Z. et al. (2015), “The similitude design method of thin-walled annular plates and determination of structural size intervals”, Journal of Mechanical Engineering Science, Vol. 230 No. 13, pp. 21582168, https://doi.org/10.1177/0954406215592055CrossRefGoogle Scholar
Needleman, A. (1988), “Material rate dependence and mesh sensitivity in localization problems”, Computer Methods in Applied Mechanics and Engineering, Vol. 67 No. 1, pp. 6985, https://doi.org/10.1016/0045-7825(88)90069-2CrossRefGoogle Scholar
Pahl, G. et al. (2013), Konstruktionslehre. Grundlagen erfolgreicher Produktentwicklung. Methoden und Anwendung, Springer Verlag, Berlin.Google Scholar
Pawelski, O. (1964), “Beitrag zur Ähnlichkeitstheorie der Umformtechnik”, Archiv für das Eisenhuettenwesen, Vol. 35 No. 1, pp. 2736, https://doi.org/10.1002/srin.196402292CrossRefGoogle Scholar
Rudolph, S. (2002), Übertragung von Ähnlichkeitsbegriffen, [Habilitation thesis], Universität Stuttgart, Germany.Google Scholar
Rust, W. (2016), Nichtlineare Finite-Elemente-Berechnungen. Kontakt, Kinematik, Material, Springer Vieweg, Hannover, https://doi.org/10.1007/978-3-658-13378-8CrossRefGoogle Scholar
Saka, H. and Imura, T. (1972), “Direct measurement of mobility of edge and screw dislocations in 3% silicon-iron by high voltage transmission electron microscopy”, Journal of the Physical Society of Japan, Vol. 32 No. 3, pp. 702716, https://doi.org/10.1143/JPSJ.32.702CrossRefGoogle Scholar
Scholz, F. (1988), Untersuchungen zum statistischen Größeneinfluß bei mehrachsiger Schwingbeanspruchung, VDI-Verlag, Düsseldorf.Google Scholar
Shokrieh, M. and Askari, A. (2013), “Similitude study of impacted composite laminates under buckling loading”, Journal of Engineering Mechanics, Vol. 139 No. 10, pp. 13341340, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000560CrossRefGoogle Scholar
Staeves, J. (1998), Berichte aus Produktion und Umformtechnik. Bd. 41: Beurteilung der Topografie von Blechen im Hinblick auf die Reibung bei der Umformung, Shaker-Verlag, Aachen.Google Scholar
Stichlmair, J. (1990), Kennzahlen und Ähnlichkeitsgesetze im Ingenieurwesen, Altos-Verlag, Essen.Google Scholar
Wolniak, P., Sauthoff, B. and Lachmayer, R. (2018), “Scaling of Structural Components by Knowledge-Based-Engineering Methods”, Proceedings of the DESIGN 2018 / 15th International Design Conference, Dubrovnik, Croatia, May 21-24, 2018, The Design Society, Glasgow, pp. 17571768. https://doi.org/10.21278/idc.2018.0234CrossRefGoogle Scholar
Weibull, W. (1959), “Zur Abhängigkeit der Festigkeit von der Probengröße”, Archive of Applied Mechanics, Vol. 28 No. 1, pp. 360362, https://doi.org/10.1007/BF00536130Google Scholar
Wriggers, P. (2008), Nonlinear finite elements methods, Springer Verlag, Heidelberg.Google Scholar
Yamaguchi, K., Takakura, N. and Imatani, S. (1995), “Increase in forming limit of sheet metals by removal of surface roughening with plastic strain (Balanced biaxial stretching of aluminium sheets and foils)”, Journal of Materials Processing Technology, Vol. 48 No. 1, pp. 2734, https://doi.org/10.1016/0924-0136(94)01629-FCrossRefGoogle Scholar
Ziebert, J. (1976), Ein Verfahren zur Berechnung des Kerb- und Größeneinflusses bei Schwingbeanspruchung, [PhD thesis], Technische Universität München.Google Scholar