Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T00:59:40.916Z Has data issue: false hasContentIssue false

Quantitative analysis by X-ray induced total electron yield (TEY) compared to XRFA

Published online by Cambridge University Press:  06 March 2012

Horst Ebel*
Affiliation:
Institut für Festkörperphysik, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A 1040 Vienna, Austria
*
a)Electronic mail: [email protected]

Abstract

The theoretical concepts of the two methods are similar. Consequently, comparable fundamental parameter algorithms can be developed and applied to a quantitative analysis of bulk specimens and to an investigation of thin layers by TEY and by XRFA. Whereas the sampling depth of XRFA is determined by photoelectric absorption, for TEY the escape probability of electrons reduces this quantity to values of less than 100 nm. Thus, TEY is practically a surface analytical method with sampling depths between X-ray photoelectron spectrometry and XRFA. The decrease of fluorescence yields with decreasing atomic number Z is responsible for a significant reduction of the elemental sensitivity of XRFA in the range of low-Z elements. On the other hand, the elemental sensitivity of TEY increases with decreasing Z as a consequence of the dominating contribution of KLL- and LMM-Auger electrons to measured TEY jumps. The possibility to quantify submonolayers and layers of nm thickness buried under nm layers, a nearly linear dependence of TEY signals versus the elemental concentration of multielement specimens and the EXAFS and XANES information that is contained in measured TEY responses, are valuable features of TEY. A disadvantage of TEY is the time consuming sequential data accumulation of TEY spectra when compared to energy dispersive XRFA. But due to progress in instrumentation TEY is no longer reserved to synchrotron radiation sources

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, M., Goedkoop, J. B., de Groot, F. M. F., Grioni, M., Fuggle, J. C., Hofmann, S., Petersen, H., and Sacchi, M. (1992). Surf. Interface Anal. SIANDQ 18, 65. sia, SIANDQ CrossRefGoogle Scholar
Berger, M. J. and Seltzer, S. M., NASA Report No. Sp.-3112, 1964, unpublished; NASA Report No. Sp.-3136, 1966, unpublished. Available from Natl. Tech. Inf. Serv. US Dept. Comm., Springfield, VA 22161.Google Scholar
Chumakov, A. J., Smirnov, G. V., Kruglov, M. V., and Solomin, I. K. (1986). Phys. Status Solidi PSSABA 98, 11. psa, PSSABA CrossRefGoogle Scholar
Criss, J. W.and Birks, L. S. (1968). Anal. Chem. ANCHAM 40, 1080. anc, ANCHAM CrossRefGoogle Scholar
Dietersdorfer, R., Master thesis, Vienna University of Technology, 2001.Google Scholar
Ebel, H., Mantler, M., Svagera, R., and Kaitna, R. (1994). Surf. Interface Anal. SIANDQ 22, 602604. sia, SIANDQ CrossRefGoogle Scholar
Ebel, H., Svagera, R., and Ebel, M. F. (1997). Mikrochim. Acta MIACAQ 125, 165171. mia, MIACAQ CrossRefGoogle Scholar
Ebel, H., Svagera, R., and Ebel, M. F. (2001). Adv. X-Ray Anal. AXRAAA 43, 519533. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., and Ebel, M. F. (2002). X-Ray Spectrom. XRSPAX 31, 437440. xrs, XRSPAX CrossRefGoogle Scholar
Ebel, H., Svagera, R., Ebel, M. F., and Baron, M. (1999). Adv. X-Ray Anal. AXRAAA 41, 732742. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., Ebel, M. F., and Zagler, N. (1995). Adv. X-Ray Anal. AXRAAA 38, 325335. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., Ebel, M. F., and Zagler, N. (1997). Adv. X-Ray Anal. AXRAAA 39, 683694. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., Ebel, M. F., and Werner, W. S. M. (2001). Adv. X-Ray Anal. AXRAAA 44, 380385. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., Ebel, M. F., and Werner, W. S. M. (2001). Adv. X-Ray Anal. AXRAAA 44, 386391. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., Ebel, M. F., Zagler, N., Werner, W. S. M., Störi, H., and Gröschl, M. (1996). ECASIAZZZZZZ 95, 991998.Google Scholar
Ebel, H., Svagera, R., Ebel, M. F., Zagler, N., Werner, W. S. M., Störi, H., and Gröschl, M. (1997). Adv. X-Ray Anal. AXRAAA 39, 665674. axr, AXRAAA Google Scholar
Ebel, H., Svagera, R., Hager, Ch., Ebel, M. F., Eisenmenger-Sittner, Ch., Wernisch, J., and Mantler, M. (1998). Adv. X-Ray Anal. 40.Google Scholar
Ebel, H., Svagera, R., and Kaitna, R. (1995). Fiz. A FIZAE4 4, 287294. fia, FIZAE4 Google Scholar
Ebel, H., Svagera, R., Mantler, M., and Ebel, M. F. (1997). X-Ray Spectrom. XRSPAX 26, 2836. xrs, XRSPAX 3.0.CO;2-1>CrossRefGoogle Scholar
Ebel, H., Svagera, R., Werner, W. S. M., and Ebel, M. F. (1999). Adv. X-Ray Anal. AXRAAA 41, 367378. axr, AXRAAA Google Scholar
Ebel, H., Zagler, N., Svagera, R., Ebel, M. F., and Kaitna, R. (1995). Fresenius' J. Anal. Chem. FJACES 353, 348350. fac, FJACES Google Scholar
Ebel, M. F., Ebel, H., and Svagera, R. (2000). Adv. X-Ray Anal. AXRAAA 42, 9198. axr, AXRAAA Google Scholar
Ebel, M. F., Svagera, R., Lindner, M., Praxmarer, N., Hager, Ch., and Ebel, H. (1999). Adv. X-Ray Anal. AXRAAA 41, 6275. axr, AXRAAA Google Scholar
Ebel, M. F., Svagera, R., Ebel, H., Hobl, R., Mantler, M., Wernisch, J., and Zagler, N. (1995). Adv. X-Ray Anal. AXRAAA 38, 127137. axr, AXRAAA Google Scholar
Erbil, A., Cargil, G. S. III, Frahm, R., and Boehme, R. F. (1988). Phys. Rev. B PRBMDO 37, 2450. prb, PRBMDO CrossRefGoogle Scholar
Ghassemi, E., Ph.D. thesis, Vienna University of Technology, 2003.Google Scholar
Gilfrich, J. V.and Birks, L. S. (1968). Anal. Chem. ANCHAM 40, 1077. anc, ANCHAM Google Scholar
Hubbell, J. H., Trehan, P. N., Singh, N., Chand, B., Metha, D., Garg, M. L., Gargh, R. R., Singh, S., and Puri, S. (1994). J. Phys. Chem. Ref. Data JPCRBU 23, 339364. jpr, JPCRBU CrossRefGoogle Scholar
Jones, R. G.and Woodruff, D. P. (1982). Surf. Sci. SUSCAS 114, 38. sus, SUSCAS CrossRefGoogle Scholar
Krol, A., Sher, C. J., and Kao, Y. H. (1990). Phys. Rev. B PRBMDO 42, 3829. prb, PRBMDO CrossRefGoogle Scholar
Martens, G., Rabe, R., Tolkiehn, G., and Werner, A. (1979). Phys. Status Solidi PSSABA 55, 105. psa, PSSABA CrossRefGoogle Scholar
Reimer, L. (1979). Scan Electron Microsc. ZZZZZZ II, 111. 7bm, ZZZZZZ Google Scholar
Schroeder, S. L. M. (1996). Solid State Commun. SSCOA4 98, 405. ssc, SSCOA4 CrossRefGoogle Scholar
Sherman, J. (1955). Spectrochim. Acta SPACA5 7, 283. sra, SPACA5 CrossRefGoogle Scholar
Shiraiwa, T.and Fujino, N. (1966). Jpn. J. Appl. Phys. JJAPA5 5, 886. jja, JJAPA5 CrossRefGoogle Scholar
Sugiyama, H. (1974). Jpn. Bull. El. Techn. Lab.ZZZZZZ 38, 351.Google Scholar
Vogel, J.and Sacchi, M. (1994). J. Electron Spectrosc Relat PhenomZZZZZZ 67, 181.CrossRefGoogle Scholar
X-Ray Absorption (1988). Edited by D. C. Koningsberger and R. Prins (Wiley, New York).Google Scholar
Yur’ev, Yu. N., Pogrebitsky, K. Yu., Bakaleinikov, L. A., Lodyzhensky, I. I., and Konnikov, S. G. (1994). Phys. Low-Dim. Struct.ZZZZZZ 8, 55.Google Scholar