Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T17:03:11.925Z Has data issue: false hasContentIssue false

XRD study of phase transformations in lithiated graphite anodes by Rietveld method

Published online by Cambridge University Press:  09 May 2017

Alexander Missyul*
Affiliation:
Battery R&D, Samsung SDI, 130 Samsung-ro, Yeongtong-gu, Suwon 16678, South Korea ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Barcelona, Spain
Ivan Bolshakov
Affiliation:
Battery R&D, Samsung SDI, 130 Samsung-ro, Yeongtong-gu, Suwon 16678, South Korea
Roman Shpanchenko
Affiliation:
Battery R&D, Samsung SDI, 130 Samsung-ro, Yeongtong-gu, Suwon 16678, South Korea
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Commercial anodes with different state of charge are investigated by X-ray diffraction technique using Rietveld method for data collected with standard laboratory equipment. It is shown that full profile refinement gives good approximation for quantitative description of the charge/discharge process and may be used for estimation of real state of charge (SoC). Careful analysis of the diffraction profile with Rietveld method allows us to quantitatively distinguish the contribution of different LixC6 phases and estimate the real SoC.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bak, S.-M., Hu, E., Zhou, Y., Yu, X., Senanayake, S. D., Cho, S.-J., Kim, K.-B., Chung, K. Y., Yang, X.-Q., and Nam, K.-W. (2014). “Structural changes and thermal stability of charged LiNi x Mn y Co z O2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy,” ACS Appl. Mater. Interfaces 6, 2259422601.Google Scholar
Billaud, D. and Henry, F. (2002). “Structural studies of the stage III lithium–graphite intercalation compound,” Solid State Commun. 124, 299304.CrossRefGoogle Scholar
Billaud, D., Henry, F. X., Lelaurain, M., and Willmann, P. (1996). “Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds,” J. Phys. Chem. Solids 57, 775781.Google Scholar
Bobrikov, I. A., Balagurov, A. M., Hu, C.-W., Lee, C.-H., Chen, T.-Y., Deleg, S., and Balagurov, D. A. (2014). “Structural evolution in LiFePO4-based battery materials: in situ and ex situ time-of-flight neutron diffraction study,” J. Power Sources 258, 356364.CrossRefGoogle Scholar
Casas-Cabanas, M., Reynaud, M., Rikarte, J., Horbach, P., and Rodríguez-Carvajal, J. (2016). “FAULTS: a program for refinement of structures with extended defects,” J. Appl. Crystallogr. 49, 22592269.Google Scholar
Dittrich, H. and Wohlfahrt-Mehrens, M. (2001). “Stacking fault analysis in layered materials,” Int. J. Inorg. Mater. 3, 11371142.CrossRefGoogle Scholar
Guerard, D. and Herold, A. (1975). “Intercalation of lithium into graphite and other carbons”, Carbon 13, 337345.CrossRefGoogle Scholar
He, H., Liu, B., Abouimrane, A., Ren, Y., Liu, Y., Liu, Q., and Chao, Z.-S. (2015). “Dynamic lithium intercalation/deintercalation in 18 650 lithium ion battery by time-resolved high energy synchrotron X-ray diffraction,” J. Electrochem. Soc. 162, A2195A2200.Google Scholar
Iwashita, N., Park, C. R., Fujimoto, H., Shiraishi, M., and Inagaki, M. (2004). “Specification for a standard procedure of X-ray diffraction measurements on carbon materials,” Carbon 42, 701714.Google Scholar
Johnsen, R. E. and Norby, P. (2013). “Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries: a study of the initial intercalation and deintercalation of lithium into graphite,” J. Appl. Crystallogr. 46, 15371543.Google Scholar
Kleiner, K., Dixon, D., Jakes, P., Melke, J., Yavuz, M., Roth, C., Nikolowskia, K., Liebaub, V., and Ehrenberg, H. (2015). “Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries,” J. Power Sources 273, 7082.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996). “ POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns,” J. Appl. Crystallogr. 29, 301303.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748) (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Leoni, M., Gualtieri, A. F., and Roveri, N. (2004). “Simultaneous refinement of structure and microstructure of layered materials,” J. Appl. Crystallogr. 37, 166173.Google Scholar
Li, H., Yang, C., and Liu, F. (2009). “Novel method for determining stacking disorder degree in hexagonal graphite by X-ray diffraction,” Sci. China Ser. B: Chem. 52, 174180.CrossRefGoogle Scholar
Ohzuku, T., Iwakoshi, Y., and Sawai, K. (1993). “Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell,” J. Electrochem. Soc. 140, 24902498.CrossRefGoogle Scholar
Robert, R., Bünzli, C., Berg, E. J., and Novák, P. (2015). “Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses,” Chem. Mater. 27, 526536.CrossRefGoogle Scholar
Senyshyn, A., Dolotko, O., Mühlbauer, M. J., Nikolowski, K., Fuess, H., and Ehrenberg, H. (2013). “Lithium intercalation into graphitic carbons revisited: experimental evidence for twisted bilayer behavior,” J. Electrochem. Soc. 160, A3198A3205.CrossRefGoogle Scholar
Senyshyn, A., Mühlbauer, M. J., Dolotko, O., and Ehrenberg, H. (2015). “Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite,” J. Power Sources 282, 235240.Google Scholar
Sharma, N. and Peterson, V. K. (2013). “Overcharging a lithium-ion battery: effect on the Li x C6 negative electrode determined by in situ neutron diffraction,” J. Power Sources 244, 695701.Google Scholar
Shi, H., Reimers, J. N., and Dahn, J. R. (1993). “Structure-refinement program for disordered carbons,” J. Appl. Crystallogr. 26, 827836.Google Scholar
Toby, B. H. (2001). “ EXPGUI, a graphical user interface for GSAS ,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Treacy, M. M. J., Newsam, J. M., and Deem, M. W. (1991). “A general recursion method for calculating diffracted intensities from crystals containing planar faults,” Proc. R. Soc. Lond. A 433, 499520.Google Scholar
Wilhelm, H. A., Croset, B., and Medjahdi, G. (2007). “Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders,” Carbon 45, 23562364.Google Scholar
Zhou, Z., Bouwman, W. G., Schut, H., and Pappas, C. (2014). “Interpretation of X-ray diffraction patterns of (nuclear) graphite,” Carbon 69, 1724.CrossRefGoogle Scholar
Supplementary material: File

Missyul supplementary material

Missyul supplementary material 1

Download Missyul supplementary material(File)
File 308.1 KB