Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T01:55:24.916Z Has data issue: false hasContentIssue false

Domain structure of CoIr nanoalloys

Published online by Cambridge University Press:  11 April 2017

Evgeny Yu. Filatov*
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
Svetlana V. Cherepanova
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russian Federation
Ilia V. Kochetygov
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
Yury V. Shubin
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
Sergey V. Korenev
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

X-ray diffraction (XRD) pattern of nanosized equimolar solid solution CoIr prepared by thermolysis of [Co(NH3)6][Ir(C2O4)3] contains peaks characteristic of both face-centered cubic (fcc) and hexagonal close-packed (hcp) structure. Moreover, 101 peak of hcp modification is substantially wider than 100 and 002 peaks, 102 and 103 are very broad and almost invisible. Peak 200 of fcc structure is wider than the other peaks of this modification and slightly shifted toward lower angles. It was shown by simulation of XRD patterns that particles of CoIr alloy are nanoheterogeneous and consist of lamellar domains having fcc and hcp structures. The best fit was obtained for the following model parameters: an average crystallites size is about 10 nm, average thicknesses of the fcc and hcp domains are 1.7 and 1.1 respectively. The presence of domain structure was confirmed by transmission electron microscopy data.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asanova, T., Asanov, I., Zadesenets, A., Filatov, E., Plyusnin, P., Gerasimov, E., and Korenev, S. (2016). “Study on thermal decomposition of double complex salt [Pd(NH3)4][PtCl6],” J. Therm. Anal. Calorim. 123(2), 11831195.Google Scholar
Cherepanova, S. V. (2012). “X-ray scattering on one-dimensional disordered structures,” J. Struct. Chem. 53, 109132.Google Scholar
Cherepanova, S. V. and Tsybulya, S. V. (2004). “Simulation of X-ray powder diffraction patterns for one-dimensionally disordered crystals,” Mater. Sci. Forum 443–444, 8790.Google Scholar
Filatov, E. Yu., Yusenko, K. V., Vikulova, E. S., Plyusnin, P. E., and Shubin, Yu. V. (2009). “XRD investigation and thermal properties of [Ir(NH3)6][Co(C2O4)3]·H2O and [Co(NH3)6][Ir(C2O4)3] precursors for Co0.50Ir0.50 ,” Z. Kristallogr. Suppl. 30, 263268.Google Scholar
Firdous, N., Janjua, N. K., Qazi, I., and Wattoo, M. H. S. (2015). “Optimal Co-Ir bimetallic catalysts supported on gamma-Al2O3 for hydrogen generation from hydrous hydrazine,” Int. J. Hydrog. Energy (In press). doi: 10.1016/j.ijhydene.2015.10.084.Google Scholar
Köster, W. and Horn, E. (1952). “Zustandsbild Und Gitterkonstanten Der Legierungen Des Kobalts Mit Rhenium, Ruthenium, Osmium, Rhodium Und Iridium” (in German),” Z. Metallkd., 43(12), 444449.Google Scholar
Kraus, W. and Nolze, G. (2000). PowderCell 2.4, Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-ray Powder Patterns (Federal Institute for Materials Research and Testing, Berlin).Google Scholar
Krumm, S. (1995). “An interactive windows program for profile fitting and size/strain analysisMater. Sci. Forum 228–231, 183188.Google Scholar
Liu, Z. and Sadler, P. J. (2014). “Organoiridium complexes: anticancer agents and catalysts,” Acc. Chem. Res. 47, 11741185.CrossRefGoogle ScholarPubMed
Martynova, S. A., Filatov, E. Yu., Korenev, S. V., Kuratieva, N. V., Sheludyakova, L. A., Plusnin, P. E., Shubin, Yu. V., Slavinskaya, E. M., and Boronin, A. I. (2014). “Low temperature synthesis of Ru–Cu alloy nanoparticles with the compositions in the miscibility gap,” J. Solid State Chem. 212, 4247.Google Scholar
Plyusnin, P. E., Makotchenko, E. V., Shubin, Y. V., Baidina, I. A., Korolkov, I. V., Sheludyakova, L. A., and Korenev, S. V. (2015). “Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6],” J. Mol. Struct. 1100, 174179.Google Scholar
Potemkin, D. I., Filatov, E. Yu., Zadesenets, A. V., Snytnikov, P. V., Shubin, Yu. V., and Sobyanin, V. A. (2012). “Preferential CO oxidation over bimetallic Pt–Co catalysts prepared via double complex salt decomposition,” Chem. Eng. J. 207–208, 683689.Google Scholar
Potemkin, D. I., Semitut, E. Y., Shubin, Y. V., Plyusnin, P. E., Snytnikov, P. V., Makotchenko, E. V., Osadchii, D. Y., Svintsitskiy, D. A., Venyaminov, S. A., Korenev, S. V., and Sobyanin, V. A. (2014). “Silica, alumina and ceria supported Au-Cu nanoparticles prepared via the decomposition of [Au(en)2]2[Cu(C2O4)2]3·8H2O single-source precursor: synthesis, characterization and catalytic performance in CO PROX,” Catal. Today 235, 103111.Google Scholar
Slavcheva, E., Borisov, G., Lefterova, E., Petkucheva, E., and Boshnakova, I. (2015). “Ebonex supported iridium as anode catalyst for PEM water electrolysis,” Int. J. Hydrog. Energy 40, 1135611361.CrossRefGoogle Scholar
Tetlow, H., de Boer, J. P., Ford, I. J., Vvedensky, D. D., Curcio, D., Omiciuolo, L., Lizzit, S., Baraldi, A., and Kantorovich, L. (2016). “Ethylene decomposition on Ir(111): initial path to graphene formation,” Phys. Chem. Chem. Phys. 18, 2789727909.CrossRefGoogle ScholarPubMed
Tsybulya, S. V., Cherepanova, S. V., Khasin, A. A., Zaikovskii, V. V., and Parmon, V. N. (1999). “Structure of heterogeneous coherent states in fine grains of metallic cobalt,” Dokl. Phys. Chem. 366(1–3), 143146.Google Scholar
Vedyagin, A. A., Volodin, A. M., Stoyanovskii, V. O., Kenzhin, R. M., Slavinskaya, E. M., Mishakov, I. V., Plyusnin, P. E., and Shubin, Y. V. (2014). “Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support,” Catal. Today 238, 8086.CrossRefGoogle Scholar
Zhong, H.-J., Lu, L., Leung, K.-H., Wong, C. C. L., Peng, C., Yan, S.-C., Ma, D.-L., Cai, Z., Wand, H.-M. D., and Leung, C.-H. (2015). “An iridium(III)-based irreversible protein–protein interaction inhibitor of BRD4 as a potent anticancer agent,” Chem. Sci. 6, 54005408.Google Scholar