Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T17:03:11.488Z Has data issue: false hasContentIssue false

(Ba, Sr)3MgSi2O8 structure change caused by Ba/Sr replacement

Published online by Cambridge University Press:  15 October 2014

Yoshinori Yonezaki*
Affiliation:
Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Miyamae 7–32, Kofu400–8511, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Crystal structure of BaxSr3–xMgSi2O8 has been determined by Raman spectroscopy and X-ray diffraction. The solid solution series have glaserite-type layered structures made of corner-sharing SiO4 tetrahedra and MgO6 octahedra. Ba2+ and Sr2+ ions are sandwiched in between the layers. Raman spectroscopy has found that structural symmetry changes at x = 0.5 and 2.5. Structural refinement by the Rietveld method has clarified that the symmetry changes occur among C2 (Z = 4), P${\bar 3}$m1 (Z = 1), and P${\bar 3}$ (Z = 3). They originate in SiO4 tilting caused by size mismatch between alkali–earth cations and their site spaces. For x ≤ 0.5, SiO4 tilting occur every other interlayer space, whereas for x ≥ 2.5, all the SiO4 tilt.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitasalo, T., Hietikko, A., Hölsä, J., Lastusaari, M., Niittykoski, J., and Piispanen, T. (2007). “Crystal structure of the Ba3MgSi2O8:Mn2+, Eu2+ phosphor for white light emitting diodes,” Z. Kristallogr. Suppl. 26, 461466.Google Scholar
Barry, T. L. (1968). “Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8, and Ca3MgSi2O8 ,” J. Electrochem. Soc. 115, 733738.CrossRefGoogle Scholar
Fu, C., Hu, Y., Wang, Y., Wu, H., and Wang, X. (2010). “Luminescent properties of the Sr2.97– x Ba x MgSi2O8:Eu2+ 0.01, Dy3+ 0.02 with different Sr/Ba ratio,” J. Alloys Compd. 502, 423428.CrossRefGoogle Scholar
Fukuda, K., Ito, M., and Iwata, T. (2007). “Crystal structure and structural disorder of (Ba0.65Ca0.35)2SiO4 ,” J. Solid State Chem. 180, 23052309.CrossRefGoogle Scholar
Gromov, V. V. and Morton, J. R. (1966). “Paramagnetic centers in irradiated potassium sulfate,” Can. J. Chem. 44, 527528.Google Scholar
Hayakawa, T. and Ohta, M. (1999). “Role of dopant on the formation of SO3 radical induced by X-ray irradiation in K3Na(SO4)2 ,” J. Lumin. 81, 313319.CrossRefGoogle Scholar
Im, W. B., Kim, Y. I., Yoo, H. S., and Jeon, D. Y. (2009). “Luminescent and structural properties of (Sr1– x ,Ba x )3MgSi2O8:Eu2+: effects of Ba content on the Eu2+ site preference for thermal stability,” Inorg. Chem. 48, 557564.Google Scholar
Iwata, T., Horie, T., and Fukuda, K. (2009). “Reinvestigation of crystal structure and structural disorder of Ba3MgSi2O8 ,” Powder Diffr. 24, 180184.Google Scholar
Izumi, F. and Momma, K. (2007). “Three-dimensional visualization in powder diffraction,” Solid State Phenom. 130, 1520.Google Scholar
Jung, H. K. and Seo, K. S. (2006). “Luminescent properties of Eu2+-activated (Ba, Sr)3MgSi2O8 phosphor under VUV irradiation,” Opt. Mater. 28, 602605.CrossRefGoogle Scholar
Kaczmarski, M. and Mróz, B. (1998). “Raman study of the ferroelastic phase transition in K3Na(SeO4)2 ,” Phys. Rev. B 57, 1358913598.Google Scholar
Kaczmarski, M., Mróz, B., Kiefte, H., Clouter, M. J., and Rich, N. H. (1994). “Raman studies of lattice vibrations in ferroelastic K3Na(SeO4)2 ,” Ferroelectrics 152, 331335.CrossRefGoogle Scholar
Kim, J. S., Lim, K. T., Jeong, Y. S., Jeon, P. E., Choi, J. C., and Park, H. L. (2005). “Full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphors for white-light-emitting diodes,” Solid State Commun. 135, 2124.Google Scholar
Krajewski, T., Piskunowicz, P., and Mróz, B. (1993). “Structural phase transitions in K3Na(SeO4)2 crystals,” Phys. Status Solidi 135, 557564.CrossRefGoogle Scholar
Lin, Y., Tang, Z., Zhang, Z., and Nan, C. W. (2003). “Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R = Ca, Sr, Ba) phosphors,” J. Alloys Compd. 348, 7679.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
Mróz, B., Kiefte, H., Clouter, M. J., and Tuszyński, J. A. (1992). “Ferroelastic phase transition in K3Na(SeO4)2: Brillouin-scattering studies and theoretical modeling,” Phys. Rev. B 46, 87178724.Google Scholar
Ohta, M., Hayakawa, T., and Furukawa, H. (2000). “Dose quality determined using ESR imaging,” Radiat. Meas. 32, 147151.CrossRefGoogle Scholar
Okamoto, S., Nanba, Y., Honma, T., and Yamamoto, , (2008). “Ba-substitution effect on luminescent properties and thermal degradation of Sr3MgSi2O8:Eu2+ blue phosphor under vacuum–UV–light excitation,” J. Electrochem. Solid-State Lett. 11, J47J49.Google Scholar
Park, C. H., Hong, S. T., and Keszler, D. A. (2009). “Superstructure of a phosphor material Ba3MgSi2O8 determined by neutron diffraction data,” J. Solid State Chem. 182, 496501.CrossRefGoogle Scholar
Park, C. H., Kim, T. H., Yonesaki, Y., and Kumada, N. (2011). “A re-investigation of the crystal structure and luminescence of BaCa2MgSi2O8:Eu2+ ,” J. Solid State Chem. 184, 15661570.CrossRefGoogle Scholar
Remy, C., Reynard, B., and Madon, M. (1997). “Raman spectroscopic investigations of dicalcium silicate: polymorphs and high-temperature phase transformations,” J. Am. Ceram. Soc. 80, 413423.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.Google Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial–and–error powder indexing program for all symmetries,” J. Appl. Crystallogr. 18, 367370.Google Scholar
Yonesaki, Y. (2013). “Structural consideration on the emission properties of Eu2+-doped Ba(Sr, Ca)2MgSi2O8 ,” J. Solid State Chem. 201, 324329.Google Scholar
Yonesaki, Y., Takei, T. Kumada, N. and Kinomura, N. (2008). “Crystal structure of BaCa2MgSi2O8 and the photoluminescent properties activated by Eu2+ ,” J. Lumin. 128, 15071514.CrossRefGoogle Scholar
Yonesaki, Y., Takei, T., Kumada, N., and Kinomura, N. (2009). “Crystal structure of Eu2+–doped M 3MgSi2O8 (M: Ba, Sr, Ca) compounds and their emission properties,” J. Solid State Chem. 182, 547554.Google Scholar
Supplementary material: PDF

Yonezaki Supplementary Material

Figures

Download Yonezaki Supplementary Material(PDF)
PDF 24.5 MB