Published online by Cambridge University Press: 01 April 2022
This paper concerns the ways in which one can/cannot combine extensive quantities. Given a particular theory of extensive measurement, there can be no alternative ways of combining extensive quantities, where ‘alternative’ means that one combining operation can be used instead of another causing only a change in the number assigned to the quantity. As a consequence, rectangular concatenation cannot be an alternative combining operation for length as was suggested by Ellis and agreed by Krantz, Luce, Suppes, and Tversky. I argue as well that a theory which imposes such restrictions on the combining operation is more desirable than less stringent rival theories.
Send reprint requests to the author, Arbinsgt. 9, 0253, Oslo, Norway.
My thanks to Philip Kitcher and an anonymous referee for their critical comments on an earlier draft of this paper.