Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T11:18:40.376Z Has data issue: false hasContentIssue false

Ontogenetic and evolutionary patterns of shape differentiation during the initial diversification of Paleocene acarininids (planktonic foraminifera)

Published online by Cambridge University Press:  08 April 2016

Frédéric Quillévéré
Affiliation:
Department of Earth Sciences—Marine Geology, Göteborg University, Box 460, Göteborg SE-405 30, Sweden. E-mail: frederic.quillevere@univ_lyon1.fr
Vincent Debat
Affiliation:
Populations, Génétique et Evolution, CNRS, UPR 9034 BP1, 91198 Gif-sur-Yvette, France
Jean-Christophe Auffray
Affiliation:
Institut des Sciences de l'Evolution (UMR 5554 CNRS), cc064, Université Montpellier II, 34095 Montpellier cedex 05, France

Abstract

Previous studies have established a close relationship between the evolutionary origin of new clades of planktonic foraminifera and heterochrony. Studies of the Paleogene radiation of the genus Morozovella revealed, for example, a temporal pattern of variation consistent with paedomorphosis. Our study focused on the late Paleocene species of Acarinina, sister group of Morozovella. Shape variations related to evolution and ontogeny are appraised through a morphometric method based on outline analysis using the elliptic Fourier transform. Patterns of developmental and evolutionary changes are studied and compared within each species (Acarinina nitida, A. subsphaerica, and A. mckannai). As no congruence is found, we suggest that the evolutionary change observed within these species is not related to a heterochronic process. We also test for similarity of both evolutionary and ontogenetic changes among species. Although we observe no significant correlation between temporal patterns of shape change among species, the tight congruence of ontogenetic trajectories suggests that the developmental constraints affecting these trajectories have been preserved in spite of the evolutionary diversification of acarininids. Heterochrony is not clearly involved in the early Paleogene diversification of acarininids and therefore may not be as common as previously claimed. The role of developmental constraints in monitoring morphological evolution therefore needs to be reassessed.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.Google Scholar
Aubry, M.-P. 1995. From chronology to stratigraphy: interpreting the lower and middle Eocene stratigraphic record in the Atlantic Ocean. Pp. 213274in Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlations. SEPM, Tulsa, Okla.Google Scholar
Berggren, W. A., Aubry, M.-P., van Fossen, M., Kent, D. V., Norris, R. D., and Quillévéré, F. 2000. Integrated Paleocene calcareous plankton magneteobiochronology, and stable isotope stratigraphy: DSDP Site 384 (NW Atlantic Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology 159:151.CrossRefGoogle Scholar
Berggren, W. A., and Norris, R. D. 1997. Biostratigraphy, phylogeny and systematics of Paleocene trochospiral planktic foraminifera. Micropaleontology Special Publication 43(Suppl. 1):1116.Google Scholar
Brummer, G. J. A., Hemleben, C., and Spindler, M. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny). Marine Micropaleontology 12:357381.Google Scholar
Crampton, J. S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28:179186.CrossRefGoogle Scholar
Crônier, C., Renaud, S., Feist, R., and Auffray, J. C. 1998. Ontogeny of Trimerocephalus lelievrei (Trilobita, Phacopida), a representative of the Late Devonian phacopine paedomorphoc-line: a morphometric approach. Paleobiology 24:359370.Google Scholar
de Beer, G. 1958. Embryos and ancestors. Oxford University Press, Oxford.Google Scholar
de Vargas, C., Renaud, S., Hilbrecht, H., and Pawlowski, J. 2001. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphological and environmental evidence. Paleobiology 27:104125.Google Scholar
D'Hondt, S., Zachos, J. C., and Schultz, G. 1994. Stable isotopic signals and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20:391406.Google Scholar
Foote, M. 1989. Perimeter-based Fourier analysis: a new method applied to the trilobite cranidium. Journal of Paleontology 63:880885.Google Scholar
Galbrun, B. 1992. Magnetostratigraphy of upper Cretaceous and lower Tertiary sediments, Sites 761 and 762, Exmouth Plateau, Northwest Australia. In von Rad, U., Haq, B. U., et al., eds. Scientific Results of the Ocean Drilling Program 122:699716. Ocean Drilling Program, College Station, Tex.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Hall, B. K. 1998. Evolutionary developmental biology. Chapman and Hall, London.Google Scholar
Healy-Williams, R., and Williams, D. F. 1981. Fourier analysis of test shape of planktonic foraminifera. Nature 289:485487.Google Scholar
Healy-Williams, R., Ehrlich, R., and Williams, D. F. 1985. Morphometric and stable isotopic evidence for subpopulations of Globorotalia truncatulinoides. Journal of Foraminiferal Research 15:242253.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Jones, D. J., and Gould, S. J. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.Google Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1996. Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella. Paleobiology 22:266281.Google Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews 73:79123.Google Scholar
Kuhl, F. P., and Giardina, C. R. 1982. Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18:259278.Google Scholar
Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics. Pp. 95130in Marcus, L. F., Bello, E., and Garcia-Valdecasas, A., eds. Contributions to Morphometrics. Museo Nacional de Ciencias Naturales, Madrid.CrossRefGoogle Scholar
McKinney, M. L. 1999. Heterochrony: beyond words. Paleobiology 25:149153.CrossRefGoogle Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.Google Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8:130142.CrossRefGoogle Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology 60:413.Google Scholar
McNamara, K. J. 1988. The abundance of heterochrony in the fossil record. Pp. 287325in McKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
McNamara, K. J. 1997. Shapes of time. Johns Hopkins University Press, Baltimore.Google Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.Google Scholar
O'Keefe, F. R., Rieppel, O., and Sander, P. M. 1999. Shape dissociation and inferred heterochrony in a clade of pachypleurosaurs (Reptilia, Sauropterygia). Paleobiology 25:504517.Google Scholar
Olsson, R. K. 1970. Paleocene planktonic foraminiferal biostratigraphy and paleozoogeography of New Jersey. Journal of Paleontology 44:333351.Google Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T. 1999. Atlas of Paleocene Planktonic foraminifera. Smithsonian Contributions to Paleobiology No. 85.Google Scholar
Pearson, P. N. 1993. A lineage phylogeny for the Paleogene planktonic foraminifera. Micropaleontology 39:193232.Google Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1993. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP 523, South Atlantic. Journal of Foraminiferal Research 23:123140.CrossRefGoogle Scholar
Quillévéré, F., Norris, R. D., and Aubry, M.-P. 1998. Foraminifères planctoniques paléocènes de l'ODP Site 761. Magnéto-biostratigraphie, analyses isotopiques (δ18O, δ13C) et implications paléoécologiques. Actes de la RST99, p.180.Google Scholar
Quillévéré, F., Norris, R. D., Berggren, W. A., and Aubry, M.-P. 2000. 59.2 Ma and 56.5 Ma: two significant moments in the evolution of acarininids (planktonic foraminifera). Geologiska Föreningens i Stockholm Förhandlingar 122:131132.Google Scholar
Quillévéré, F., Norris, R. D., Moussa, I., and Berggren, W. A. 2001. Role of photosymbiosis and biogeography in the diversification of early Paleogene acarininids (planktonic foraminifera). Paleobiology 27:311326.2.0.CO;2>CrossRefGoogle Scholar
Raff, R. A. 1996. The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago.Google Scholar
Raff, R. A., and Wray, G. A. 1989. Heterochrony: developmental mechanisms and evolutionary results. Journal of Evolutionary Biology 2:409434.Google Scholar
Reilly, S. M., Wiley, E. O., and Meinhardt, D. J. 1997. An integrative approach of heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60:119143.Google Scholar
Renaud, S., Michaux, J., Jaeger, J.-J., and Auffray, J.-C. 1996. Fourier analysis applied to Stephanomys (Rodentia, Muridae) molars: nonprogressive evolutionary pattern in a gradual lineage. Paleobiology 22:255265.Google Scholar
Reyment, R., and Jöreskog, K. G. 1993. Applied factor analysis in the natural sciences. Cambridge University Press, Cambridge.Google Scholar
Rohlf, F. J. 1993. NTSYS-pc; numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, N.Y.Google Scholar
Rohlf, F. J., and Archie, J. W. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology 33:302317.Google Scholar
Rohlf, F. J., and Marcus, L. F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8:129132.Google Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research 15:321336.CrossRefGoogle Scholar
Siesser, W. G., and Bralower, T. J. 1992. Cenozoic calcareous nannofossil biostratigraphy on the Exmouth Plateau, eastern Indian Ocean. In von Rad, U., Haq, B. U., et al. Scientific Results of the Ocean Drilling Program 122:601624. Ocean Drilling Program, College Station, Tex.Google Scholar
Wagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. American Zoologist 36:3643.Google Scholar
Wei, K.-Y. 1994. Allometric heterochrony in the Pliocene-Pleistocene planktic foraminiferal clade Globoconella. Paleobiology 20:6684.Google Scholar
Wei, K.-Y., Zhang, Z. W., and Wray, C. 1992. Shell ontogeny of Globorotalia inflata (I): growth dynamics and ontogenetic stages. Journal of Foraminiferal Research 22:318327.CrossRefGoogle Scholar
Zelditch, M. L., and Fink, W. L. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22:241254.Google Scholar
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2000. Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution 54:13631371.Google Scholar