Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:08:22.496Z Has data issue: false hasContentIssue false

Variable Light Soaking Effect of Cu(In,Ga)Se2 Solar Cells with Conduction Band Offset Control of Window/Cu(In,Ga)Se2 Layers

Published online by Cambridge University Press:  01 February 2011

Takashi Minemoto
Affiliation:
[email protected], Ritsumeikan University, Photonics, 1-1- Nojihigashi, Kusatsu, Shiga, 525-8577, Japan, +81-77-561-3065, +81-77-561-3065
Yasuhiro Hashimoto
Affiliation:
[email protected], Matsushita Electric Ind. Co., Ltd., 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 612-0237, Japan
Takuya Satoh
Affiliation:
[email protected], Matsushita Electric Ind. Co., Ltd., 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 612-0237, Japan
Takayuki Negami
Affiliation:
[email protected], Matsushita Electric Ind. Co., Ltd., 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 612-0237, Japan
Hideyuki Takakura
Affiliation:
[email protected], Ritsumeikan University, Photonics, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
Get access

Abstract

The impact of the conduction band offset (CBO) between window/Cu(In,Ga)Se2 (CIGS) layers on the light soaking (LS) effect in CIGS solar cells has been studied with continuous CBO control using a (Zn,Mg)O (ZMO) window layer. Two types of CIGS solar cells with different window/buffer/absorber layers configurations were fabricated, i.e., ZMO/CIGS (without buffer layer) and ZMO/CdS/CIGS structures. The CBO values between ZMO and CIGS layers were controlled to -0.15~0.25 eV. Plus and minus signs of CBO indicate the conduction band minimums of ZMO above and below that of CIGS, respectively. Current-voltage (J-V) characteristics of the solar cells with different LS durations revealed that a positive CBO value higher than 0.16 eV induces J-V curve distortion, i.e., LS effect, and all the J-V characteristics stabilized in 30 min. The degrees of the LS effect were dominated by the CBO value between ZMO and CIGS layers in the both structure regardless of the existence of CdS buffer layers. These results indicate that the LS effect is dominated by the highest barrier for photo-generated electrons in the conduction band diagram, i.e., the CBO between ZMO and CIGS layers, and quantitatively the LS effect emerges the CBO value higher than 0.16 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M.A., Ramanathan, K., AbuShama, J., Hasoon, F., Young, D.L., Egaas, B. and Noufi, R., Prog. Photovolt: Res. Appl. 13, 209216 (2005).Google Scholar
2. Burgelman, M., Engelhardt, F., Guillemoles, J.F., Herberholz, R., Igalson, M., Klenk, R., Lampert, M., Meyer, T., Nadenau, V., Niemegeers, A., Parisi, J., Rau, U., Schock, H.W., Schmitt, M., Seifert, O., Walter, T. and Zott, S., Prog. Photovolt: Res. Appl. 5, 121130 (1997).Google Scholar
3. Eisgruber, I.L., Granata, J.E., Sites, J.R., Hou, J. and Kessler, J., Sol. Energy Mater. Sol. Cells 53, 367377 (1998).Google Scholar
4. Nakada, T., Mizutani, M., Hagiwara, Y. and Kunioka, A., Sol. Energy Mater. Sol. Cells 67, 255260 (2001).Google Scholar
5. Pudov, A.O., Sites, J.R., Contreras, M.A., Nakada, T. and Schock, H.-W., Thin Solid Films 480-481, 273278 (2005).Google Scholar
6. Tokita, Y., Chaisitsak, S., Yamada, A., Konagai, M., Sol. Energy Mater. Sol. Cells 75, 915 (2003).Google Scholar
7. Minemoto, T., Negami, T., Nishiwaki, S., Takakura, H. and Hamakawa, Y., Thin Solid Films 372, 173176 (2000).Google Scholar
8. Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y.,Negami, T., Hashimoto, Y., Uenoyama, T. and Kitagawa, M., Sol. Energy Mater. Sol. Cells 67, 8388 (2001).Google Scholar
9. Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H., Hamakawa, Y., J. Appl. Phys. 89, 83278330 (2001).Google Scholar
10. Minemoto, T., Hashimoto, Y., Satoh, T., Kolahi, W.S., Negami, T., Takakura, H. and Hamakawa, Y., Sol. Energy Mater. Sol. Cells 75, 121126 (2003).Google Scholar
11. Minemoto, T., Takakura, H., Hamakawa, Y., Hashimoto, Y., Nishiwaki, S. and Negami, T., Proceedings of 16th European Photovoltaic Solar Energy Conference, London, 2001, pp. 686689.Google Scholar
12. Negami, T., Satoh, T., Hashimoto, Y., Nishiwaki, S., Shimakawa, S. and Hayashi, S., Technical Digest of the Eleventh International Photovoltaic Science and Engineering Conference, Hokkaido, 1999, pp. 633634.Google Scholar
13. Hashimoto, Y., Nishiwaki, S., Negami, T. and Wada, T., Jpn. J. Appl. Phys. 39, Suppl. 39-1 415417 (2000).Google Scholar
14. Wada, T., Hayashi, S., Hashimoto, Y., Nishiwaki, S., Sato, T., Negami, T. and Nishitani, M., Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion, Vienna, 1998, pp. 403406.Google Scholar
15. Heath, J.T., Cohen, J.D. and Shafarman, W.N., Thin Solid Films 431 –432, (2003) 426430.Google Scholar
16. Lee, J., Cohen, J. D. and Shafarman, W.N., Thin Solid Films 480–481, (2005) 336340.Google Scholar