Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:40:32.007Z Has data issue: false hasContentIssue false

Utilization of Solar Energy and Atmospheric Oxygen in the Photodregradation of Diesel in Water by Cu/TiO2 Catalysts

Published online by Cambridge University Press:  01 February 2011

Ma. Manriquez*
Affiliation:
Instituto Politécnico Nacional. Depto. Termodinámica, ESFM IPN, Av. IPN s/n, Edif. 7, 07730 México D.F., Mexico
Grisel Corro
Affiliation:
Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla.4 sur 104, Puebla, Puebla 72000, Mexico
J. Gonzalo Hernandez
Affiliation:
Instituto Mexicano del Petróleo, Av. Eje Central No 152, Mexico 0700, D.F. Mexico
*
*To whom correspondence should be addressed. E-mail: [email protected]
Get access

Abstract

Photocatalytic destruction of the water soluble diesel fraction (WSF) was performed using Cu/TiO2 catalysts. Inexpensive and clean solar light and atmospheric oxygen were used as the energy source and oxidant, respectively. We investigated the effect of Cu species on the formation of a doping energy level between the conduction and valence band in TiO2. Photocatalytic reactions were investigated by monitoring the evolution of WSF as a function oftime of solar irradiation by UV-vis and FTIR spectroscopic techniques. The photocatalytic process in the presence of 5%Cu/TiO2 catalyst, is shown to be quantitatively efficient in the destruction of the water-soluble diesel fraction. The total destruction of water-soluble compounds originating from diesel residues indicates that photocatalysis can be employed for WSF treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Garcia-Martinez, M.J., Riva, I. Da, Canoira, L., Llamas, J.F., Alcantar, R., Gallego, J.L. R., Appl. Catal. 67 (2006) 279.Google Scholar
2. Crittenden, J.C., Suri, R.P.S., Perram, D.L., Hand, D.W., Wat. Res. 31 (1997) 411.Google Scholar
3. Kim, S.M., Geissen, S.U., Vagelpohl, A., Wat. Sci. Technol. 35 (1997) 239.Google Scholar
4. Bowker, M., James, D., Stone, P., Bennett, R., Perkins, N., Millard, L., Greaves, J., Dickinson, A., J. Catal. 217 (2003) 427433.Google Scholar
5. Li, Y. X., Lu, G., Li, S., J. Photochem. Photobiol. A 152 (2002) 219228.Google Scholar
6. Herrmann, J. M., Disdier, J., Pichat, P., J. Catal. 113 (1988) 7281.Google Scholar
7. Kohno, Y., Hayashi, H., Takenaka, S., Tanaka, T., Funabiki, T., Yoshida, S., J. Photochem. Photobiol. A 126 (1999) 117123.Google Scholar
8. Stathatos, E., Lianos, P., Falaras, P., Siokou, A., Langmuir 16 (2000) 23982400.Google Scholar
9. Schaaff, T. G., Blom, D. A., Nano. Lett. 2 (2002) 507511.Google Scholar
10. Einaga, H., Ibusuki, T., Futamura, S., Environ. Sci. Technol. 38 (2004) 285289.Google Scholar
11. Sun, B., Vorontsov, A. V., Smirniotis, P. G., Langmuir 19 (2003) 31513156.Google Scholar
12. Kim, S., Choi, W., J. Phys. Chem. B 106 (2002) 1331113317.Google Scholar
13. Jeon, S., Braun, P. V., Chem. Mater. 15 (2003) 12561263.Google Scholar
14. Zhao, X. P., Yin, J. B., Chem. Mater. 14 (2002) 22582263.Google Scholar
15. Diwald, O., Thompson, T.L., Zubkov, T., Goralski, E.G., Walck, S. D., Yates, J. T. Jr., J.Phys. Chem. B 108 (2004) 60046008.Google Scholar
16. Mrowetz, M., Balcerski, W., Colussi, A. J., Hoffmann, M. R., J. Phys. Chem. B 108 (2004) 1726917273.Google Scholar
17. Klosek, S., Raftery, D., J. Phys. Chem. B 105 (2001) 28152819.Google Scholar
18. Patra, A., Friend, C. S., Kapoor, R., Prasad, P. N., Chem. Mater. 15 (2003) 36503655.Google Scholar
19. Premkumar, J., Chem. Mater. 16 (2004) 39803981.Google Scholar
20. Bryan, J. D., Heald, S. M., Chambers, S. A., Gamelin, D. R., J. Am. Chem. Soc. 126 (2004) 1164011647.Google Scholar
21. Wei, T., Wang, Y., Wan, C., J. Photochem. Photobiol. A 55 (1990) 115126.Google Scholar
22. Wei, T., Wan, C., Ind. Eng. Chem. Res. 30 (1991) 12931300.Google Scholar
23. Wei, T., Wan, C., J. Photochem. Photobiol. A 69 (1992) 241249.Google Scholar
24.Sykora, J., Coord. Chem. Rev. 159 (1997) 95108.Google Scholar
25. Foster, N., Noble, R., Koval, C., Environ. Sci. Technol. 27 (1993) 350356.Google Scholar
26. Okamoto, K., Yamamoto, Y., Tanaka, H., Itaya, A., Bull. Chem. Soc. Jpn. 58 (1985) 20232028.Google Scholar
27.Ward, M., Bard, A., J. Phys. Chem. 86 (1982) 35993605.Google Scholar
28. Butler, E. C., Davis, A. P., J. Photochem. Photobiol. A. 70 (1993) 273283.Google Scholar
29.Kiwi, J., Pulgarin, C., Peringer, P., Gratzel, M., Appl. Catal. B 3 (1993) 8599.Google Scholar
30.Colon, G., Maicu, M., Hidalgo, M.C., J.A. Navl. Appl. Catal. B: Environmental 67 (2006) 4151.Google Scholar
31.Daniela Lima, G., A, Valerio C.D. Soares, Ribeiro, Eric B., Carvalho, Daniel A., Cardoso, Erika C.V., Rassi, Flavia C., Mundima, Kleber C., Rubima, Joel C., Paulo, A.Z. J. Anal. Appl. Pyrolysis 71 (2004) 987996.Google Scholar
32. Coronado, Juan M., Zorn, Michael E., Tejedor-Tejedor, Isabel, Anderson, Marc A.. Appl. Catal. B: Environmental 1355 (2003) 116.Google Scholar
33.Lopez, T., Gomez, R., Sanchez, E., Tzompantzi, F. and Vera, L., J. Sol-gel Sci. Tech. 22 (2001) 99.Google Scholar
34. Pal, Bonamali, Sharon, Maheshwar. J. Mol. Catal. A: Chemical 160 (2000) 453460.Google Scholar
35. Palancar, Gustavo G., Toselli, Beatriz M.. Atmospheric Environment 36 (2002) 287292.Google Scholar
36. Pal, Bonamali, Sharon, Maheshwar. J.Mol. Catal A: Chemical 160 (2000).453460 Google Scholar
37. Glaze, W., Lay, Y., Kang, J., Ind. Eng. Chem. Res. 34 (1995) 23142323.Google Scholar
38.Yan, X., He, J., Evans, D.G., Zhu, Y., Duan, X., Journal of Porous Materials 11 (2004) 131139.Google Scholar
39. Paola, A. Di, Marcí, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S. and Ohtan, B.. J. Phys. Chem. B (2001) 19.Google Scholar
40. Slamet, , Nasution, Hosna W., Purnama, Ezza, Kosela, Soleh, Gunlazuard, Jarnuzi. Catalysis Communications 6 (2005) 313319.Google Scholar