Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:39:46.531Z Has data issue: false hasContentIssue false

Understanding and Control of Lateral Contraction in Stamping Lithography

Published online by Cambridge University Press:  01 February 2011

Zheng Li
Affiliation:
[email protected] UniversityDepartment of Mechanics and Engineering ScienceBeijing N/AChina, People's Republic of
Li Tan
Affiliation:
[email protected], University of Nebraska, Department of Engineering Mechanics and Nebraska Center for Materials and Nanoscience, Lincoln, NE, 68516, United States
Gang-yu Liu
Affiliation:
[email protected], University of California, Department of Chemistry, Davis, CA, 95616, United States
Get access

Abstract

Thin film contraction under external mechanical stress can be used to miniaturize size and increase density of patterned features on top. Nonlinear Finite Element Analysis is used to provide guidance on this contraction process. It was found that the substrate contraction causes stress accumulation along interfaces between protruded features and substrate. These stress accumulation complexes the control of profile changes on patterned features and suggest a design of patterned features arranged beyond a critical distance to avoid cross-interference.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xia, Y. N. and Whitesides, G. M., Annu. Rev. Mater. Sci. 28, 153 (1998).Google Scholar
2. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., J. Vac. Sci. Technol. B 14, 4129 (1996).Google Scholar
3. Xia, Y., Kim, E., Zhao, X.-M., Rogers, J.A., Prentiss, M. and Whitesides, G.M., Science 273, 347 (1996).Google Scholar
4. Rogers, J.A., Schueller, O.J.A., Marzolin, C. and Whitesides, G.M., Appl. Optics 36, 14 (1997).Google Scholar
5. Tien, J., Nelson, C. M., and Chen, C. S., Proc. Natl. Acad. Sci. USA 99, 1758 (2002)Google Scholar
6. Tan, L., Kong, Y. P., Bao, L. R., Huang, X. D., Guo, L. J., Pang, S. W., and Yee, A. F., J. Vac. Sci. Technol. B 21, 2742 (2003)Google Scholar
7. Bietsch, A. and Michel, B., J. Appl. Phys. 88, 4310 (2000)Google Scholar
8. Bao, L. R., Tan, L., Huang, X. D., Kong, Y. P., Guo, L. J., Pang, S. W., and Yee, A. F., J. Vac. Sci. Technol. B 21, 2749 (2003)Google Scholar
9. Klajn, P., Fialkowski, M., Bensemann, I. T., Bitner, A., Campbell, C. J., Bishop, K., Smoukov, S., and Grzybowski, B. A., Nature Mater. 3, 729 (2004)Google Scholar
10. Ouyang, Z., Tan, L., Liu, M., Judge, O., Zhang, X., Li, H., Hu, J., Patten, T. E., and Liu, G. Y., Small, 2, 884 (2006)Google Scholar
11. Ogden, R. W., “Non-linear Elastic Deformations,” Ellis Horwood Limited, pp. 204222, 1984 Google Scholar
12. Nielsen, L. E. and Landel, R. F., “Mechanical Properties of Polymers and Composites,” 2nd Edition, Marcel Dekker, Inc. 1994 Google Scholar