Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T18:04:50.005Z Has data issue: false hasContentIssue false

Transport Properties of Narrow Gap II-VI Superlattices

Published online by Cambridge University Press:  21 February 2011

C. A. Hoffman
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
J. R. Meyer
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
F. J. Bartoli
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Get access

Abstract

The present understanding of the carrier transport properties in Hg-based super-lattices such as the HgTe-CdTe system is reviewed. Novel features in the calculated superlattice band structures and their implications for macroscopic transport properties are discussed. Nearly all of the main experimental results are qualitatively consistent with a large valence band offset, but are difficult to explain if the offset is small. The valence band offset controversy thus appears to have been largely resolved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Faurie, J. P., Million, A., and Piaguet, J., Appl. Phys. Lett. 41, 713 (1982).Google Scholar
2. Faurie, J.-P., IEEE J. Quant. Electron. QE–22, 1656 (1986).Google Scholar
3. Meyer, J. R., Hoffman, C. A., and Bartoli, F. J., Semicond. Sci. Technol. (in press).Google Scholar
4. Faurie, J. P., Boukerche, M., Sivananthan, S., Reno, J., and Hsu, C., Superlatt. and Microstruct. 1, 237 (1985).Google Scholar
5. Guldner, Y., Bastard, G., Vieren, J. P., Voos, M., Faurie, J. P., and Million, A., Phys. Rev. Lett. 51, 907 (1983).Google Scholar
6. Kowalczyk, S. P., Cheung, J. T., Kraut, E. A., and Grant, R. W., Phys. Rev. Lett. 56, 1605 (1986).Google Scholar
7. Duc, T. M., Hsu, C., and Faurie, J. P., Phys. Rev. Lett. 58, 1127 (1987).Google Scholar
8. Tersoff, J., Phys. Rev. Lett. 56, 2755 (1986); A. Munoz, J. Sanchez-Dehesa, and F. Flores, Phys. Rev. B 35, 6468 (1987); S.-H. Wei and A. Zunger, Phys. Rev. Lett. 59, 144 (1987); N. E. Christensen, Phys. Rev. B 37, 4528 (1988); W. R. L. Lambrecht and B. Segall, Phys. Rev. Lett. 61, 1764 (1988).Google Scholar
9. Schulman, J. N. and McGill, T. C., Appl. Phys. Lett. 34, 663 (1979).Google Scholar
10. Wu, G. Y. and McGill, T. C., Appl. Phys. Lett. 47, 634 (1985).Google Scholar
11. Ram-Mohan, L. R., Yoo, K. H., and Aggarwal, R. L., Phys. Rev. B 38, 6151 (1988).Google Scholar
12. Schulman, J. N. and Chang, Y.-C., Phys. Rev. B 33, 2594 (1986).Google Scholar
13. Meyer, J. R., Bartoli, F. J., Hoffman, C. A., and Schulman, J. N., Phys. Rev. B 38, 12457 (1988).Google Scholar
14. Pikus, G. E. and Bir, G. L., Fiz. Tverd. Tela 1, 1642 (1959) [Soy. Phys. Solid State 1, 1502 (1959)].Google Scholar
15. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., and Schulman, J. N., J. Vac. Sci. Technol. A 7, 404 (1989).Google Scholar
16. Meyer, J. R., Hoffman, C. A., Bartoli, F. J., Han, J. W., Cook, J. W. Jr., Schetzina, J. F., Chu, X., Faurie, J. P., and Schulman, J. N., Phys. Rev. B 38, 2204 (1988).Google Scholar
17. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Han, J. W., Cook, J. W. Jr., Schetzina, J. F., and Schulman, J. N., Phys. Rev. B 39, 5208 (1989).Google Scholar
18. Johnson, N. F., Hui, P. M., and Ehrenreich, H., Phys. Rev. Lett. 61, 1993 (1988).Google Scholar
19. Although the direct energy gap is always negative for sufficiently thick wells, the valence band maximum can occur kx > 0 when dw is large, and under some circumstances the superlattice may remain semimetallic for all well thicknesses.+0+when+dw+is+large,+and+under+some+circumstances+the+superlattice+may+remain+semimetallic+for+all+well+thicknesses.>Google Scholar
20. Goodwin, M. W., Kinch, M. A., Koestner, R. J., Chen, M. C., Seiler, D. G., and Justice, R. J., J. Vac. Sci. Technol. A 5, 3110 (1987).Google Scholar
21. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Han, J. W., Cook, J. W. Jr., and Schetzina, J. F., Phys. Rev. B 40, 3867 (1989).Google Scholar
22. Meyer, J. R., Bartoli, F. J., and Hoffman, C. A., J. Vac. Sci. Technol. A 5, 3035 (1987).Google Scholar
23. Hoffman, C. A., Meyer, J. R., Wagner, R. J., Bartoli, F. J., Chu, X., Faurie, J. P., Ram-Mohan, L. R., and Xie, H., J. Vac. Sci. Technol. (in press).Google Scholar
24. Hoffman, C. A., Meyer, J. R., Bartoli, F. J., Chu, X., and Faurie, J. P., 19th Int. Conf. Phys. Semicond. (Warsaw, 1988), ed. Zawadzki, W., (Polish Academy of Sciences, Warsaw, 1988), p. 467.Google Scholar
25. Reno, J., Sou, I. K., Wijewarnasuriya, P. S., and Faurie, J. P., Appl. Phys. Lett. 48, 1069 (1986).Google Scholar
26. Perez, J. M., Wagner, R. J., Meyer, J. R., Han, J. W., Cook, J. W. Jr., and Schetzina, J. F., Phys. Rev. Lett. 61, 2261 (1988).Google Scholar
27. Meyer, J. R., Wagner, R. J., Bartoli, F. J., Hoffman, C. A., and Ram-Mohan, L. R., Phys. Rev. B 40, 1388 (1989).Google Scholar
28. Schulman, J. N., Wu, O. K., Patten, E. A., Han, J. W., Lansari, Y., Kim, L. S., Cook, J. W. Jr., and Schetzina, J. F., Appl. Phys. Lett. 53, 2420 (1988).Google Scholar
29. Broerman, J. G., Phys. Rev. B 1, 4568 (1970).Google Scholar