Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T12:44:18.520Z Has data issue: false hasContentIssue false

Towards the Design and Implementation of Surface Tethered Quantum Dot-Based Nanosensors

Published online by Cambridge University Press:  01 February 2011

Igor L. Medintz
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington DC 20375
Kim E. Sapsford
Affiliation:
George Mason University, 10910 University Blvd, MS 4E3, Manassas, VA 20110
Joel P. Golden
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington DC 20375
Aaron R. Clapp
Affiliation:
Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, DC, 20375
Ellen R. Goldman
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington DC 20375
Hedi Mattoussi
Affiliation:
Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, DC, 20375
Get access

Abstract

Considerable progress has been made towards creating quantum dot (QD) based nanosensors. The most promising developments have utilized QDs as energy donor in fluorescence resonance energy transfer (FRET) processes. Hybrid QD-protein-dye complexes have been assembled to study FRET, to prototype analyte sensing and even to control or modulate QD photoluminescence. In order to transition the benefits of this technology into the field, QD-based nanosensors will have to be integrated into microtiter wells, flow cells, portable arrays and other portable devices. This proceeding describes two examples of QD-protein-dye assemblies. The first investigates the concepts of FRET applied to QD energy donors and the second describes a prototype biosensor employing QDs. We also introduce the first steps towards implementing surface-tethered QD-bioconjugates, which could potentially serve in the design of solid-state QD-based sensing assemblies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Electronic address: [email protected]

References

REFERENCES

1. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science 281, 20132015 (1998).Google Scholar
2. Chan, W.C.W. and Nie, S., Science 281, 20162018 (1998).Google Scholar
3. Murphy, C.J., Anal. Chem. 74, 520A526A (2002).Google Scholar
4. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., and Bawendi, M.G., J. Am. Chem. Soc. 122, 1214212150 (2000).Google Scholar
5. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M., Nature Biotechnology 21, 4751 (2003).Google Scholar
6. Willard, D.M., Carillo, L.L., Jung, J., and Van Orden, A., Nano Lett. 1, 469474 (2001).Google Scholar
7. Tran, P.T., Goldman, E.R., Anderson, G.P., Mauro, J.M., and Mattoussi, H., Phys. Stat. Sol. (b) 229, 427432 (2002).Google Scholar
8. Patolsky, F., Gill, R., Weizmann, Y., Mokari, T., Banin, U., and Willner, I., J. Am. Chem. Soc. 125, 1391813919 (2003).Google Scholar
9. Hines, M.A. and Guyot-Sionnest, P., J. Phys. Chem. B100, 468471 (1996).Google Scholar
10. Dabbousi, B.O., Rodriguez-Viejo, J., Mikelec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G., J. Phys. Chem. 101, 94639475 (1997).Google Scholar
11. Clapp, A.R., Medintz, I.L., Mauro, J.M., Fisher, B.R., Bawendi, M.G., and Mattoussi, H., J. Am. Chem. Soc., 125, 301310 (2004).Google Scholar
12. Medintz, I.L., Clapp, A.R., Mattoussi, H., Goldman, E.R., and Mauro, J.M., Nature Materials 2, 630638 (2003).Google Scholar
13. Sapsford, K.E., Charles, P.T., Patterson, C.H., and Ligler, F.S., Anal. Chem. 74, 10611068 (2002).Google Scholar
14. Rowe-Taitt, C.A., Hazzard, J.W., Hoffman, K.E., Cras, J.J., Golden, J.P., and Ligler, F.S., Biosen. Bioelect. 15, 579589 (2000).Google Scholar
15. Lingerfelt, B.M., Mattoussi, H., Goldman, E.R., Mauro, J.M., and Anderson, G.P., Anal. Chem. 75, 40434049 (2003).Google Scholar
16. Goldman, E.R., Balighian, E.D., Mattoussi, H., Kuno, M.K., Mauro, J.M., Tran, P.T., and Anderson, G.P., J. Am. Chem. Soc. 124, 63786382 (2002).Google Scholar
17. Hainfeld, J.F., Liu, W., Halsey, C.M.R., Freimuth, P., and Powell, R. D., J. Str. Bio. 127, 185198 (1999).Google Scholar