No CrossRef data available.
Article contents
Time-Resolved Transport of Electrons and Holes in Conjugated Polymers
Published online by Cambridge University Press: 10 February 2011
Abstract
Detailed experimental and theoretical analysis of the pulsed excitation of polymer light emitting diodes is presented. We find a set of universal transient features for different device configurations which can be reproduced using our phenomenological numerical model. We find that the temporal evolution of the electroluminescence can be characterised by five main features: i) a delay followed by; ii) fast initial rise at turn-on followed by; iii) a slow rise (slower by at least one order of magnitude); iv) fast modulation (<15ns, unresolved) at turn-off followed by v) a long-lived exponential tail. We suggest a method for extracting mobility values which is found to be compatible with CW drive schemes. Mobilities for holes and electrons are extracted for a poly(p-phenylenevinylene) co-polymer and poly(di-octyl fluorene).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999