Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T22:44:12.375Z Has data issue: false hasContentIssue false

Thermodynamics and Kinetics for Suppression of GeO Desorption by High Pressure Oxidation of Ge

Published online by Cambridge University Press:  31 January 2011

Kosuke Nagashio
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
C. H. Lee
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
T. Nishimura
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
K. Kita
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
A. Toriumi
Affiliation:
[email protected], The University of Tokyo, Tokyo, Japan
Get access

Abstract

We analyze a main scheme for the suppression of GeO desorption by the high pressure oxidation which drastically improve the electrical quality of Ge/GeO2 capacitors. The inherent driving force for GeO to form at the Ge/GeO2 interface and to diffuse toward the GeO2 surface was realized by the concentration gradient in the GeO2 film, which was obtained from the thermodynamic calculation. Kinetic consideration based on the comparison with Si/SiO2 stacks suggests that GeO desorption at the GeO2 surface is the rate-limiting process under passive oxidation conditions. When O2 pressure is increased by high pressure oxidation, the vapor pressure of GeO at the GeO2 surface is reduced, restricting GeO desorption at the GeO2 surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Law, J. T., and Meigs, P. S., J. Electrochem. Soc. 104, 154 (1957).Google Scholar
2 Schlier, R. E., and Farnsworth, H. E., J. Chem. Phys. 30, 917 (1959).Google Scholar
3 Chui, C. O., Ramanathan, S., Triplett, B. B., McIntyre, P. C., and Saraswat, K. C., Tech. Dig. IEDM, 437 (2002).Google Scholar
4 Ritenour, A. , Yu, S., Lee, M. L., Lu, N., Bai, W., Pitera, A., Fitzgerald, E. A., Kwong, D.-L., and Antoniadis, D. A., Tech. Dig. IEDM, 433 (2004).Google Scholar
5 Bai, W. P., Lu, N., and Kwong, D.-L., IEEE EDL 26, 378 (2005).Google Scholar
6 Kamata, Y., Materials Today 11, 30 (2008).Google Scholar
7 Lee, C.H., Nishimura, T., Nagashio, K., Kita, K., and Toriumi, A., ECS Trans.(in press).Google Scholar
8 Wagner, C., J. Appl. Phys. 29, 1295 (1958).Google Scholar
9 Gulbransen, E. A. and Jansson, S. A., Oxidation of Metals 4, 181 (1972).Google Scholar
10 Smith, F. W. and Ghidini, G., J. Electrochem. Soc. 129, 1300 (1982).Google Scholar
11 Ishizuka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
12 Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
13 Barin, I., Thermodynamical Data of Pure Substances, PartI&II, VCH Verlags Gesellschaft, Weinheim, 1993.Google Scholar
14 Birks, N. and Meier, G. H., Introduction to high temperature oxidation of metals, Edward Arnold, 1983, p. 42.Google Scholar
15 Schurman, M. K. and Tomozawa, M., J. Non-Crystal. Soids 202, 93 (1996).Google Scholar
16 Kalen, J. D., Boyce, R. S., and Cawley, J. D., J. Am. Ceram. Soc. 74, 203 (1991).Google Scholar
17 Kita, K., Suzuki, S., Nomura, H., Takahashi, T., Nishimura, T., and Toriumi, A., Jpn. K. Appl. Phys. 47, 2349 (2008).Google Scholar
18 Jackson, K. A., Kinetic Processes, Wiley-VCH, 2004, p.97.Google Scholar
19 Kita, K., Lee, C. H., Nishimura, T., Nagashio, K., and Toriumi, A., ECS Trans. 16, 187 (2008).Google Scholar