Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:43:01.852Z Has data issue: false hasContentIssue false

A Thermodynamic Model for Amorphization and Topological Criteria

Published online by Cambridge University Press:  11 February 2011

O.N. Senkov
Affiliation:
UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432–1894
D.B. Miracle
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLLMD, Wright-Patterson AFB, OH 45433–7817
S. Rao
Affiliation:
UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432–1894
Get access

Abstract

A thermodynamic model for amorphization is developed which allows analysis of the effect of composition, atomic radii, and elastic constants of constitutive elements on amorphization. The model is based on comparison of the Gibbs free energy and entropy of a defective crystal and undercooled liquid. The glass transition temperatures for thermodynamically unstable amorphous phases are determined as a function of topological parameters of an alloy. It increases with an increase in the atomic size of the solvent element and it has a maximum at a specific alloy composition. Topological criteria for alloy compositions that can produce a thermodynamically stable amorphous state are outlined and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okamoto, P.R., Lam, N.Q. and Rehn, L.E., Physics of Crystal-to-Glass Transformations, Solid State Physics, Vol. 52, (Academic Press, NY, 1999), pp. 1135.Google Scholar
2. Luzzi, D.E., Mori, H., Fujita, H., Meshii, M., Acta Metallurgica 34, 629 (1986).Google Scholar
3. Aoki, K. and Masumoto, T., J. Alloys & Compounds 231, 20 (1995).Google Scholar
4. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Letters 51, 415 (1983).Google Scholar
5. Bakker, H., Zhou, G.G., Yang, H., Progress Mater. Sci. 39, 159 (1995).Google Scholar
6. Senkov, O.N., Srisukhumbowornchai, N., Ovecoglu, M.L., Froes, F.H., J. Mater. Research 13, 3339 (1998).Google Scholar
7. Schwarz, R.B., Petrich, R.R. and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).Google Scholar
8. Ilyin, A.I., Voinov, S.S., Senkov, O.N., Physics of Met. Metallogr. 67 (6), 144 (1989).Google Scholar
9. Tallon, J.L., Nature, 342, 658 (1989).Google Scholar
10. Fecht, H.J., Nature, 356, 133 (1992).Google Scholar
11. Granato, A.V., Phys. Rev. Letters, 68, 974 (1992).Google Scholar
12. Egami, T., Mater. Sci. Eng. A 226–228, 261 (1997).Google Scholar
13. Cahn, R.W., in: Materials Science and Technology, Vol. 9, edited by Zarzycki, J., (VCH Publishers, New York 1991) p. 493.Google Scholar
14. Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).Google Scholar
15. Senkov, O.N. and Miracle, D.B., Materials Research Bulletin, 36, 2183 (2001).Google Scholar
16. Senkov, O.N. and Miracle, D.B., J. Non-Cryst. Solids (2003) Accepted for publication.Google Scholar
17. Thompson, C.V. and Spaepen, F., Acta Metallurgica 27, 1855 (1979).Google Scholar
18. Fecht, H.J., Perepezko, J.H., Lee, M.C., Johnson, W.L., J. Appl. Physics 68, 4494 (1990).Google Scholar
19. Eshelby, J.D., The continuum theory of lattice defects, in: Seitz, F. and Turnbull, D. (Eds.), Solid State Physics, Vol. 3, Acad. Press, New York, 1956, pp. 79144.Google Scholar