Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:38:07.414Z Has data issue: false hasContentIssue false

Thermal Property Evolution Toward Effectively Two-Dimensional Substrate-Free Systems

Published online by Cambridge University Press:  21 February 2011

R. Geer
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
T. Stoebe
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
C. C. Huang
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455
R. Pindak
Affiliation:
AT&T Bell Laboratory, Murray Hill, N.J. 07974
J. Goodby
Affiliation:
School of Chemistry, The University, Hull HU6 7RX, England
Get access

Abstract

A high-resolution differential quasi-adiabatic calorimeter has been developed to investigate the physical properties of freestanding liquid-crystal films. Our recent heat-capacity studies near the smectic-A-hexatic-B transition of both 65OBC and 46OBC freestanding films clearly demonstrate the evolution towards twodimensional limiting behavior in four-layer films. As the film thickness decreases towards four molecular layers, the heatcapacity anomalies first display separate peaks for the surface and interior transitions and then evolve to one dominated by the surface transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nelson, D. R. and Halperin, B. I., Phys. Rev. B 19, 2457 (1979).Google Scholar
2. Geer, R., Huang, C. C., Pindak, R., and Goodby, J. W., Phys. Rev. Lett., al, 540 (1989).Google Scholar
3. Pindak, R., Moncton, D. E., Davey, S. C., and Goodby, J. W., Phys. Rev. Lett. 46, 1135 (1981).Google Scholar
4. Davey, S. C., Budai, J., Goodby, J.W., and Pindak, R., Phys. Rev. Lett. 53, 2129 (1984).Google Scholar
5. Chen, Ming, Ho, J. T., Hui, S. W., and Pindak, R., Phys. Rev. Lett. 61, 550 (1986).Google Scholar
6. Pitchford, T., Nounesis, G., Dumrongrattana, S., Viner, J. M., Huang, C. C., and Goodby, J. W., Phys. Rev. A 32 1938 (1985).Google Scholar
7. Berker, A. N. and Nelson, D.R., Phys. Rev. B 19, 2488 (1979).Google Scholar
8. Salla, S. A. and Reidel, E. K., Phys. Rev. B 23, 6008 (1981).Google Scholar
9. Bruinsma, R., Nature 341, 486 (1989).Google Scholar
10. Nounesis, G., Geer, R., Liu, H. Y., Huang, C. C., and Goodby, J. W., Phys. Rev. A 40, 5468 (1989).Google Scholar
11. Huang, C. C., Nounesis, G., Geer, R., Goodby, J. W., And Guillon, D., Phys. Rev. A 39, 3741 (1989).Google Scholar
12. Nelson, D. R., “Phase transitions and critical phenomena”, Domb, C. and Lebowitz, J. L. (eds), 7, P. 1, Academic Press (New York) 1983 and K. J. Stranburg, Rev. Mod. Phys. 60, 161 (1988) and references found therein.Google Scholar