Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T06:38:47.091Z Has data issue: false hasContentIssue false

Temperature Dependence of the Electrical Conductivity of Poly(Benzo[1,2-b:4,5-b'] Dithiophene-4,8-Diyl Vinylene) and Poly(Dodecylthiophene)

Published online by Cambridge University Press:  10 February 2011

R. C Hyer
Affiliation:
Dept. of Physics, Martin Pomerantz
R. G. Pethe
Affiliation:
Dept. of Physics, Martin Pomerantz
T. Yogi
Affiliation:
Dept. of Physics, Martin Pomerantz
S. C. Sharma
Affiliation:
Dept. of Physics, Martin Pomerantz
J. Wang
Affiliation:
Dept. of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019Dept. of Chemistry, Carnegie Mellon University, Pittsburg, PA.
R. L. Meline
Affiliation:
Dept. of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019Dept. of Chemistry, Carnegie Mellon University, Pittsburg, PA.
R. L. Elsenbaumer
Affiliation:
Dept. of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019Dept. of Chemistry, Carnegie Mellon University, Pittsburg, PA.
R. C. McCullough
Affiliation:
Dept. of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019Dept. of Chemistry, Carnegie Mellon University, Pittsburg, PA.
Get access

Abstract

We present results for the electrical conductivity (σ) of thin films of poly(benzo[1,2-b:4,5- b']dithiophene-4,8-diyl vinylene) (PBDV) and poly (dodecylthiophene) (PDDT) as a function of temperature in the range 15-295K. The polymers were doped with FeC13 and PF6 which resulted in electrical conductivities differing by two orders of magnitude at room temperature. We examine three sets of σ(T)-data by using the variable-range hopping (VRH) model that predicts a linear relationship between ln(T1/2σ) and T1/4. We observe a change in the slope of the ln(T1/2σ) vs T14 relationship in all three samples at low temperatures. We also analyze the temperature dependence of the resistivity of PBDV by using the thermal fluctuation-induced tunneling model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heeger, A. J., Kivelson, S., Schrieffer, J. R., and Su, W. P., Rev. Mod. Phys., 60, 781 (1988).Google Scholar
2. Reynolds, J. R., J. Mol. Electronics, 2, 1 (1986).Google Scholar
3. Bredas, J. L. and Street, G. B., Accounts Chem. Res. 18, 309 (1985).Google Scholar
4. Pfluger, P. and Street, G. B., J. Chem. Phys., 80, 544 (1984).10.1063/1.446428Google Scholar
5. Pfluger, P., Gubler, U. M., and Street, G. B., Solid State. Commun. 49, 911 (1984).Google Scholar
6. Scott, J. C., Bredas, J. L., Yakushi, K., Pfluger, P., and Street, G. B., Synth. Met., 9, 165 (1984).Google Scholar
7. Kanazawa, K. K., Diaz, A. F., Krounbi, M. T., and Street, G. B., Synth. Met., 4, 119 (1982).Google Scholar
8. Street, G. B., Clarke, T. C., Krounbi, M., Kanazawa, K., Lee, V., Pfluger, P., Scott, J. C., and Weiser, G., Mol. Cryst. Liq. Cryst., 83, 253 (1982).Google Scholar
9. Menon, R., Yoon, C. O., Moses, D., Heeger, A. J., and Cao, Y., Phys. Rev. B 48, 17685 (1993).Google Scholar
10. Sharma, S. C., Krishnamoorthy, S., Naidu, S. V., Eom, C. I., Krichene, S., and Reynolds, J. R., Phys. Rev. B 41, 5258 (1990).10.1103/PhysRevB.41.5258Google Scholar
11. Travers, J. P., Audebert, P., and Bidan, G., Mol. Cryst. Liq. Cryst., 118, 149 (1985).Google Scholar
12. Epstein, A. J., Rommenlmann, H., Bigelow, R., Gibson, H. W., Hoffman, D. M. and Tanner, D. B., Phys. Rev. Letts., 50, 1866 (1983).10.1103/PhysRevLett.50.1866Google Scholar
13. Elliott, S. R., Physics of Amorphous Materials, Longman Inc., N. Y., (1983).Google Scholar
14. Mott, N. F. & Davis, E. A., Electronic Processes in Non-Crystalline Materials Oxford, 1979.Google Scholar
15. Pomerantz, M., Wang, J., Seong, S., Starkey, K. P., Nguyen, L., Marynick, D. S., in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials; eds., Garito, A. F., Jen, A. K.-Y., Lee, C. Y.-C., and Dalton, L. R.; Proceedings of the MRS: Pittsburgh, PA, 328, 227 (1994).Google Scholar
16. Pomerantz, M., Chaloner-Gill, B., Harding, L. O., Tseng, J. J., Pomerantz, W. J., Synth. Met., 55, 960 (1993).Google Scholar
17. Pomerantz, M.; Chaloner-Gill, B., Harding, L.O., Tseng, J. J., Pomerantz, W. J., J. Chem. Soc., Chem. Commun., 1672 (1992).Google Scholar
18. Pomerantz, M., Tseng, J. J., Zhu, H., Sproull, S. J., Reynolds, J. R., Uitz, R., Arnott, H. J., M. I.Haider, Synth. Met., 41, 825 (1991).Google Scholar
19. Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M., Whangbo, M.-H., Organic Superconductors (including Fullerenes): Synthesis, Structure, Properties, and Theory; Prentice Hall, Englewood Cliffs, NJ, 1992.Google Scholar
20. Pomerantz, M., Wang, J., Seong, S., Starkey, K. P., Nguyen, L., Marynick, D. S., Macromolecules, 27, 7478 (1994).Google Scholar
21. Wampler, W. A.,Rajeshwar, K.,Pethe, R. G.,Hyer, R. C.,Sharma, S. C., J. M. R. 10,1811, 1995.Google Scholar
22. Papadimitrakopoulos, F., Konstandinidis, K., Miller, T. M., Opila, R., Chandross, E. A., and Galvin, M. E., Chem. Mater, 6 1563 (1994).10.1021/cm00045a014Google Scholar
23. Papadimitrakopoulos, F., Miller, T. M., Chandross, E. A., Galvin, M. E., Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem., 35, 215 (1994).Google Scholar
24. Sheng, P., Phys. Rev. B 21, 2180 (1980).10.1103/PhysRevB.21.2180Google Scholar
25. Yogi, T., “Temperature Dependence of the Electrical Conductivity of Polymers”, M. S. Thesis, University of Texas at Arlington, 1996 (unpublished).Google Scholar