Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T14:02:47.284Z Has data issue: false hasContentIssue false

Temperature and Coverage Dependence of the Surface Roughness for the Growth of Cu on Cu(001): An X-ray Scattering Study

Published online by Cambridge University Press:  21 March 2011

Cristian E. Botez
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
William C. Elliott
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
Paul F. Miceli
Affiliation:
Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, U.S.A
Peter W. Stephens
Affiliation:
Department of Physics, State University of New York, Stony Brook, NY 11794, U.S.A
Get access

Abstract

Synchrotron X-ray scattering was used to study the temperature and coverage dependence of the root-mean-square (rms) surface roughness, σ, during the homoepitaxial growth on Cu(001). At temperatures between 370 and 160K, the rms roughness was found to increase as a power law, σ =Θβ, with the coverage Θ. The roughness exponent, β, amounts to ∼1/2 for T≤200K, and it monotonically decreases with increasing T, reaching β∼1/3 at T=370K. The mean-square roughness measured at a constant coverage of 15ML, σ2 15 ML, also depends on the temperature of the substrate: between 370 and 200K, σ2 15 ML becomes progressively larger at lower temperatures, but at 110K a reentrant smoother growth is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zou, J.-K. and Wendelken, J.F., Phys. Rev. Lett. 78, 2791(1997).Google Scholar
2. Villain, J., J. Phys. I (France) 1, 19(1991); G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039(1966); R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682(1966).Google Scholar
3. Siegert, M. and Plischke, M., Phys. Rev. E 53, 307(1996); J. Krug, M. Plischke and M Siegert, Phys. Rev. Lett. 70, 3271(1993).Google Scholar
4. Bartelt, M.C. and Evans, J.W., Phys. Rev. Lett. 75, 4250(1995).Google Scholar
5. Stroscio, J.A., Pierce, D.T. and Dragoset, R.A., Phys. Rev. Lett. 70, 3615(1993).Google Scholar
6. Ernst, H.-J., Fabre, F., Fokerts, R. and Lapujoulade, J., Phys. Rev. Lett. 72, 112(1994).Google Scholar
7. Amar, J.G. and Family, F., Phys. Rev. B 54, 14742(1996).Google Scholar
8. Elliott, W.C., Miceli, P.F., Tse, T. and Stephens, P.W., Physica B 221, 65(1996).Google Scholar
9. Cullity, B. D, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1956) p. 137.Google Scholar
10. Botez, C.E., Miceli, P.F. and Stephens, P.W., (unpublished).Google Scholar
11. Elliott, W.C., Miceli, P.F., Tse, T. and Stephens, P.W., Phys. Rev. B 54, 17938(1996).Google Scholar
12. Zhang, Z., Detch, J. and Metiu, H., Phys. Rev. B 48, 4972(1993).Google Scholar
13. Evans, J.W., Sanders, D.E., Thiel, P.A. and DePristo, A.E., Phys. Rev. B 41, 5410(1990).Google Scholar
14. Kunkel, R., Poelsema, B., Verheij, L.K. and Comsa, G., Phys. Rev. Lett. 65, 733(1990).Google Scholar
15. Ernst, H.-J., Fabre, F. and Lapujoulade, J., Surf. Sci. Lett. 275, L682(1992).Google Scholar