Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:42:41.025Z Has data issue: false hasContentIssue false

Tem Evaluation of AlAs/Si Heterostructures Grown by Atomic Layer Epitaxy

Published online by Cambridge University Press:  25 February 2011

O. Ueda
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakaniiya, Atsugi 243-01, Japan
K. Kitahara
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakaniiya, Atsugi 243-01, Japan
N. Ohtsuka
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakaniiya, Atsugi 243-01, Japan
A. Hobbs
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakaniiya, Atsugi 243-01, Japan
M. Ozeki
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakaniiya, Atsugi 243-01, Japan
Get access

Abstract

AlAs/Si heterostructures grown by atomic layer epitaxy have been evaluated by transmission electron microscopy. The hetero-interface is found to be extremely abrupt as compared with the case of GaAs/Si heterostructures grown by metalorganic vapor phase epitaxy. It is also noted that atomic steps are clearly observed at the interface and that no amorphous or alloyed regions are found. At the very initial stage of growth, a three dimensional island growth mode is dominant. However, two-dimensional growth takes place after depositing only 36 atomic layers of AlAs. Two types of defects are observed in the AlAs layer: stacking faults and microtwins. Although the density of these defects is high, they tend to self-annihilate at the interface between the AlAs layer and the upper GaAs thick layer. These results lead us to conclude that using an AlAs layer grown by atomic layer epitaxy as a buffer layer is very promising for achieving high quality GaAs/Si heterostructures with low defect density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akiyama, M., Kawarada, Y. and Kaminishi, K., Japan. J. Appl. Phys. 23, L843 (1984).Google Scholar
2. Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y. and Sugo, M., Appl. Phys. Lett. 53, 2293 (1988).CrossRefGoogle Scholar
3. Choi, C., Ohtsuka, N., Minns, G., Houdre, R., Morkoc, H., Zhang, Z. L., Levi, D. and Klein, M. V., Appl. Phys. Lett. 50, 992 (1987).CrossRefGoogle Scholar
4. Hayafuji, N., Ochi, S., Miyashita, M., Tsugami, M., Murotani, T. and Kawagishi, A., J. Crystal Growth 93, 494 (1988).CrossRefGoogle Scholar
5. Ueda, O., Soga, T., Jimbo, T. and Umeno, M., J. Crystal Growth 106, 491 (1990).Google Scholar
6. Tachikawa, M. and Mori, H., Appl. Phys. Lett. 56, 2225 (1990).CrossRefGoogle Scholar
7. Crumbaker, T. E., Lee, H. Y, Hafich, M. J. and Robinson, G. Y., Appl. Phys. Lett. 54, 140 (1989).CrossRefGoogle Scholar
8. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. and Robinson, I. K., J. Vac. Sci. Technol. A2, 436 (1984).CrossRefGoogle Scholar
9. Kitahara, K., Ohtsuka, N. and Ozeki, M., J. Vac. Sci. Technol. 17. 700 (1989).CrossRefGoogle Scholar
10. Kitahara, K., Ohtsuka, N., Ueda, O. and Ozeki, M., Extended Abstract of the 22nd Conf. on Solid State Devices and Materials, 1990, p.877.Google Scholar
11. Kitahara, K., Ohtsuka, N., Ueda, O., Funakura, M. and Ozeki, M., Japan. J. Appl. Phys. 29, L2457 (1990).CrossRefGoogle Scholar
12. Kitahara, K., Ohtsuka, N., Ueda, O., and Ozeki, M., Proc. 13th State-of-The-Art Program on Compound Semiconductors (SOTAPOCS XIII), The Electrochemical Soc., Inc., 1991, p.1.Google Scholar
13. Ozeki, M., Mochizuki, K., Ohtsuka, N. and Kadama, K., J. Vac Sci. Technol. B15, 1184 (1987)Google Scholar
14. Duran, J. C., Platero, G. and Flores, F., Phys. Rev. B34, 2389 (1986).CrossRefGoogle Scholar