Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-10-06T00:27:44.205Z Has data issue: false hasContentIssue false

Synthesis and Properties of Ferromagnetic Bulk Amorphous Alloys

Published online by Cambridge University Press:  10 February 2011

A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
T. Zhang
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
H. Koshiba
Affiliation:
INOUE SUPERLIQUID GLASS PROJECT, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Sendai 982–0807, Japan
T. Itoi
Affiliation:
Graduate School, Tohoku University
Get access

Extract

Since an amorphous phase in Au-Si system was synthesized for the first time by rapid solidification in 1960[1], a large number of amorphous alloys have been prepared by various rapid solidification techniques. As the main amorphous alloy systems, one can list up the noble metal-, Fe-, Co-, Ni-, Ti-, Zr-, Nb-, Mo-, lanthanide(Ln)-, Al- and Mg-based alloys. Among these alloy systems, Fe-[2], Co-[2] and Al-[3]based amorphous alloys have been used in application fields of magnetic and high specific-strength materials. Thus, Fe- and Co-based amorphous alloys have gained the most important position as engineering amorphous alloys. When special attention is paid to Fe-based amorphous alloys, Fe-P-C alloys were synthesized in 1967[4] as the first Febased amorphous alloy. Subsequently, engineering important (Fe,Co)-Si-B amorphous alloys have been developed in 1974[5][6], followed by the formation of (Fe,Co,Ni)-(Cr,Mo,W)-C in 1978[7], (Fe,Co,Ni)-(Zr,Hf) in 1980[8] and then (Fe,Co,Ni)-(Zr,HfNb)-B amorphous alloys in 1981[9]. The (Fe,Co)-Si-B amorphous alloys have been used in many application fields as soft magnetic materials[2]. However, after 1981, nobody have succeeded in finding a new amorphous alloy in Fe- and Co-based systems by rapid solidification from liquid phase. Besides, all these amorphous alloys have serious disadvantages that high cooling rates above 105 K/s are required for glass formation and the resulting sample thickness is limited to less than about 50 μm[ 10]. Great efforts have been devoted to find Fe- and Co-based amorphous alloys with a high thermal stability of supercooled liquid against crystallization and a high glass-forming ability (GFA). Very recently, we have succeeded in finding new ferromagnetic bulk amorphous alloys with critical sample thicknesses ranging from I to 15 mm in Fe-(AI,Ga)-(P,C,B,Si)[11]-[14], (Fe,Co,Ni)-(Zr,IHf,Nb)- B[15]-[17], (Fe,Co)-(Zr,Hf)-(Nb,Ta)-(Mo,W)-B[18], (Fe,Co)-Ln-B[19] (Ln=lanthanide metal) and (Nd,Pr)-Fe-Al[20]-[22] systems. In this review, we present the formation, thermal stability, mechanical strength and magnetic properties of these new ferromagnetic bulk amorphous alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klement, W., Willens, R.H. and Duwez, P., Nature, 187, 869 (1960).Google Scholar
2. Smith, C.H. in Rapidly Solidified Alloys, edited by Liebermann, H.H. (Marcel Dekker, New York 1993), p. 617663.Google Scholar
3. Inoue, A. and Arnberg, L. in The Encyclopedia of Advanced Materials, VoL 1, edited by Cahn, R.W. (Pergamon 1994), p. 217227 .Google Scholar
4. Duwez, P. and Lin, S.C.H., J. Appl. Phys., 38, 4096 (1967).Google Scholar
5. Masumoto, T., Kimura, H.M., Inoue, A. and Waseda, Y., Mater. Sci. Eng., 23, 141 (1976).Google Scholar
6. Kikuchi, M., Fujimori, H., Obi, T. and Masumoto, T., Jpn. J. Appl. Phys., 14, 1077 (1975).Google Scholar
7. Inoue, A., Masumoto, T., Arakawa, S. and Iwadachi, T. in Rapidly Quecnhed Metals III, edited by Cantor, B. (The Metals Society, London 1978), Vo.I, p.265.Google Scholar
8. Inoue, A., Kobayashi, K., Nose, M. and Masumoto, T., J. Phys. C-8, 41, 831 (1980).Google Scholar
9. Inoue, A., Kobayashi, K., Kanehira, J. and Masumoto, T., Sci. Rep. Res. Inst. Tohoku Univ., 29A, 331 (1981).Google Scholar
10. Davies, H.A. in Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterwoths, London 1983), p.14 .Google Scholar
11. Inoue, A. and Gook, J.S., Mater. Trans., JIM, 36, p.1282 (1995).Google Scholar
12. Inoue, A. and Gook, J.S., Mater. Trans., JIM, 37, p.32 (1996).Google Scholar
13. Inoue, A., Shinohara, Y. and Gook, J.S., Mater. Trans., JIM, 36, 1427 (1985).Google Scholar
14. Inoue, A., Murakami, A., Zhang, T. and Takeuchi, A., Mater. Trans., JIM, 38, 189(1997).Google Scholar
15. Inoue, A., Zhang, T. and Itoi, T., Mater. Trans., JIM, 38, 359 (1997).Google Scholar
16. Inoue, A., Koshiba, H., Zhang, T. and Makino, A., Mater. Trans., JIM, 38, 577 (1997).Google Scholar
17. Inoue, A., Koshiba, H., Zhang, T. and Makino, A., J. Appl. Phys., 83 1967 (1998).Google Scholar
18. Inoue, A., Zhang, T. and Takeuchi, A., Appl. Phys. Lett., 71, 464 (1997).Google Scholar
19. Inoue, A., Zhang, W. and Takeuchi, A., Mater. Trans., JIM, to be submitted.Google Scholar
20. Inoue, A., Zhang, T., Zhang, W. and Takeuchi, A., Mater. Trans., JIM, 37, 99 (1996).Google Scholar
21. Inoue, A., Zhang, T. and Takeuchi, A., Mater. Trans., JIM, 37, 1731 (1996).Google Scholar
22. Inoue, A., Zhang, T. and Takeuchi, A., IEEE Trans. Magn., 33, 3814 (1997).Google Scholar
23. Chen, H.S., Rep. Prog. Phys., 43, 353 (1980).Google Scholar
24. Inoue, A., Ohtera, K., Kita, K. and Masumoto, T., Jpn. J. Appl. Phys., 27, L2,248 (1988).Google Scholar
25. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 30, 965(1989).Google Scholar
26. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 31, 177 (1990).Google Scholar
27. Inoue, A., Nishiyama, N. and Matsuda, T., Mater. Trans., JIM, 37, 181 (1996).Google Scholar
28. Inoue, A. and Katsuya, A., Mater. Trans., JIM, 37, 1332 (1996).Google Scholar
29. Inoue, A. and Nishiyama, N., Mater. Sci. Eng., A226–228, 401 (1997).Google Scholar
30. Inoue, A., Nishiyama, N. and Kimura, H.M., Mater. Trans., JIM, 38, 179 (1997).Google Scholar
31. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans., JIM, 32, 1005 (1991).Google Scholar
32. Nishiyama, N. and Inoue, A., Mater. Trans., JIM, 37, 1531(1996).Google Scholar
33. Kim, S.G., Inoue, A. and Masumoto, T., Mater. Trans., JIM, 31, 929 (1990).Google Scholar
34. Inoue, A., Yamaguchi, H., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 31, 104 (1990).Google Scholar
35. Inoue, A., Shibata, T. and Zhang, T., Mater. Trans., JIM, 36, 1420 (1995).Google Scholar
36. Pecker, A. and Johnson, W.L., Appl. Phys. Lett., 63, 2342 (1993).Google Scholar
37. Inoue, A., Aoki, T. and Kimura, H.M., Mater. Trans., JIM, 38, 175 (1997).Google Scholar
38. Schwarz, R.W. and He, Y., Mat. Sci. Forum, 235–238 231 (1997).Google Scholar
39. Inoue, A., Mater. Trans., JIM, 36, 866 (1995).Google Scholar
40. Inoue, A., Sci. Rep. Res. Inst. Tohoku Univ., A42, 1 (1996).Google Scholar
41. Inoue, A., Proc. Japan Acad., Ser.B, No.2, 19 (1997).Google Scholar
42. Inoue, A., Mater. Sci. Eng., A226–228, 357(1997).Google Scholar
43. A. Inoue Takeuchi, A. and Zhang, T., Metal. Mater. Trans., 29A 1779 (1998).Google Scholar
44. Inoue, A., Kita, K., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 30, 722 (1989).Google Scholar
45. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 31, 425 (1990).Google Scholar
46. Inoue, A., Nakamura, T., Nishiyama, N. and Masumoto, T., Mater. Trans., JIM, 33, 937 (1992).Google Scholar
47. Yokoyama, Y. and Inoue, A., Mater. Trans., JIM, 36, 1,398 (1995).Google Scholar
48. Inoue, A., Yokoyama, Y., Shinohara, Y. and Masumoto, T., Mater. Trans., JIM, 35, 923 (1994).Google Scholar
49. Inoue, A. and Zhang, T., Mater. Trans., JIM, 36, 1184 (1995).Google Scholar
50. Kato, H., Kawamura, Y. and Inoue, A., Mater. Trans., JIM, 37, 70 (1996).Google Scholar
51. Kawamura, Y., Kato, A., Inoue, A. and Masumoto, T., Int. J. Powder Metall., 33, 50 (1997).Google Scholar
52. Inoue, A., Nakamura, T., Sugita, T., Zhang, T. and Masumoto, T., Mater. Trans., JIM, 34, 351 (1993).Google Scholar
53. Inoue, A., Kato, A., Zhang, T., Kim, S.G. and Masumoto, T., Mater. Trans., JIM, 32, 609 (1991).Google Scholar
54. Kui, H.W., Greer, A.L. and Turnbull, D., Appl. Phys. Lett., 45, 615 (1984).Google Scholar
55. Kui, H.W. and Tumbull, D., Appl. Phys. Lett., 47, 796 (1985).Google Scholar
56. Willnecker, R., Wittmann, K. and Gorier, G.P., J. Non-Cryst. Solids, 156–158, 450 (1993).Google Scholar
57. Schwarz, R.W. and He, Y., Mater. Sci. Forum, 235–238, 231 (1997).Google Scholar
58. Inoue, A. and Park, R.E., Mater. Trans., JIM, 37, 1715 (1996).Google Scholar
59. Mizushima, T., Makino, A. and Inoue, A., IEEE Trans. Magn., 33, 3784 (1997).Google Scholar
60. Inoue, A. and Makino, A., MIMM, Grenoble, September (1997), in press.Google Scholar
61. Inoue, A., Itoi, T., Koshiba, H. and Makino, A., Appl. Phys. Lett., 73 744 (1998).Google Scholar
62. Itoi, T. and Inoue, A., Mater. Trans., JIM, 39 762 (1998).Google Scholar
63. Materials Science of Amorphous Metals, edited by Masumoto, T. et al. (Ohmu, Tokyo 1982), p.97.Google Scholar