Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T08:14:13.612Z Has data issue: false hasContentIssue false

Superlattices of Semiconductor Quantum Size Particles in Layered Organic Acids

Published online by Cambridge University Press:  10 February 2011

Ronit Popovitz-Biro
Affiliation:
Department of Materials and Interfaces, The Weizmann Institute of Science, 76100 Rehovot, Israel
Shouwu Guo
Affiliation:
Department of Materials and Interfaces, The Weizmann Institute of Science, 76100 Rehovot, Israel
Volker Hensel
Affiliation:
Department of Materials and Interfaces, The Weizmann Institute of Science, 76100 Rehovot, Israel
Edna Shavit
Affiliation:
Department of Materials and Interfaces, The Weizmann Institute of Science, 76100 Rehovot, Israel
Meir Lahav
Affiliation:
Department of Materials and Interfaces, The Weizmann Institute of Science, 76100 Rehovot, Israel
Get access

Abstract

The preparation of lead sulfide and cadmium sulfide quantum size particles arranged in periodic layers within organic matrices is described. Superlattices of the particles have been generated in crystals or thin films of long chain amphiphilic acids by topotactic gas-solid reactions of the lead or cadmium salts, that pack in layer structures, with H2S gas. X-ray powder diffraction and transmission electron microscopy reveal that the crystalline order of the reactant has been partially retained in the organic-inorganic composite. This approach is demonstrated by examples of organic acids bearing an aromatic ring along the hydrocarbon chain, such as derivatives of phenyl propionic and benzoic acids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Weller, H. Angew.Chem.Int.Ed.Engl. 1993, 32, 41.10.1002/anie.199300411Google Scholar
(2) Alivisatos, A. P. JPhys.Chem. 1996, 100, 13226.10.1021/jp9535506Google Scholar
(3) Bard, A. J. Science 1980, 207, 4427.10.1126/science.207.4427.139Google Scholar
(4) Motte, L.; Billoudet, F.; Lacaze, E.; Doin, J., Pileni, M. P. J. Phys.Chem.B 1997, 94, 3104.Google Scholar
(5) Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J., Osifchin, R. G. Science 1996, 273, 1690.10.1126/science.273.5282.1690Google Scholar
(6) Harfenist, S. A.; Wang, Z. L.; Whetten, R. L.; Vezmar, I., Alvarez, M. M. Adv.Mater. 1997, 9, 817.10.1002/adma.19970091012Google Scholar
(7) Tian, Y.; Wu, C., Fendler, J. H. J. Phys.Chem. 1994, 98, 4913.10.1021/j100069a024Google Scholar
(8) Guo, S.; Konopy, L., Popovitz-Biro, R. work in progress.Google Scholar
(9) Vijaya, Sarathy, K.; John Thomas, P.; Kulkarni, G. U., Rao, C. N. R. J. Phys.Chem.B 1999, 103, 399.Google Scholar
(10) Guo, S.; Popovitz-Biro, R.; Weissbuch, I.; Cohen, H.; Hodes, G., Lahav, M. Adv.Mater. 1998, 10, 121.10.1002/(SICI)1521-4095(199801)10:2<121::AID-ADMA121>3.0.CO;2-53.0.CO;2-5>Google Scholar
(11) Guo, S.; Popovitz-Biro, R.; Arad, T.; Hodes, G.; Leiserowitz, L., Lahav, M. Adv.Mater. 1998, 10, 657.10.1002/(SICI)1521-4095(199806)10:9<657::AID-ADMA657>3.0.CO;2-13.0.CO;2-1>Google Scholar