Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T18:10:58.107Z Has data issue: false hasContentIssue false

The Study of Optical and Electrical Properties of a-SiC:H for Multi-junction Si Thin Film Solar Cell

Published online by Cambridge University Press:  01 February 2011

Jenny H. Shim
Affiliation:
[email protected], LG Electronics, Seoul, Korea, Republic of
W.K. Yoon
Affiliation:
[email protected], LG Electronics, Seoul, Korea, Republic of
S.T. Hwang
Affiliation:
[email protected], LG Electronics, Seoul, Korea, Republic of
S.W. Ahn
Affiliation:
[email protected], LG Electronics, Seoul, Korea, Republic of
H.M. Lee
Affiliation:
[email protected], LG Electronics, Seoul, Korea, Republic of
Get access

Abstract

Studies have shown that wide bandgap material is required for high efficiency multi-junction solar cell applications. Here, we address proper deposition condition for high quality a-SiC:H films. In high power high pressure regime, we observed that the defect density get much lowered to the similar defect level of a-Si:H film with high H2 dilution. Single junction solar cells fabricated with the optimized condition show high open circuit voltage and low LID effect. The degradation after the LID test was only 13 % reduction of the efficiency indicating that a-SiC:H could be promising material for multi-junction solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Muller, J., Rech, B., Springer, J., and Vanecek, M., Sol. Energy 77, 917 (2004).Google Scholar
2 Simonds, B.J., Zhu, F., Hu, J., Madan, A., Taylor, P.C., Proc. Of SPIE Vol. 7409 (2009).Google Scholar
3 Yunaz, I.A., Yamada, A., Konagai, M., Jpn. J. Appl. Phys. 46, L1152 (2007).Google Scholar
4 Yunaz, I.A. et al. Sol. Energy Matt. Sol. Cells 93, 1056 (2009).Google Scholar
5 Roedern, B. von, Mahan, A.H., Williamson, D.L., and Madan, A., Symp. Mater. New Process. Tech. Photovoltaics, 5th, New Orleans (1984).Google Scholar
6 Zhang, S. et al., Sol. Energy Matt. Sol. Cells, 87, 343 (2005).Google Scholar
7 Platz, R., Fischer, D., Shah, A., MRS Symp., 377, 645 (1995).Google Scholar
8 Andoh, N., Nagayoshi, H., Kanbashi, T., Kamisako, K., Sol. Energy Matt. Sol. Cells, 49, 89 (1997).Google Scholar
9 Beyer, W. and Ghazala, M.S. Abo, Mater. Res. Soc. Symp. Proc. 507, 601 (1998).Google Scholar
10 Ouwens, J.D. and Schropp, R.E.I., Phys. Rev. B 54, 17759 (1996).Google Scholar
11 Lucovsky, G., Nemanich, R.J., and Knights, J.C., Phys. Rev. B 19, 2964 (1979).Google Scholar
12 Brodsky, M.H., Gardona, M., and Cuomo, J.J., Phys. Rev. B 16, 3556 (1977).Google Scholar
13 Smets, A.H.M., Kessels, W.M.M., and Sanden, M.C.M. Van de, Appl. Phys. Lett. 82, 1547 (2003).Google Scholar
14 Tauc, J., in Amorphous and Liquid Semiconductors, Chap.6, Plenum, London, (1976).Google Scholar
15 Conde, J.P., et al., J. Appl. Phys. 85, 3327 (1999).Google Scholar
16 Kaneko, T., Nemoto, D., Horiguchi, A., Miyakawa, N., J. Crys. Growth, 275 e1097 (2005).Google Scholar
17 Ahn, J.Y., Jun, K.H., and Lim, K.S., Appl. Phys. Lett. 82, 1718 (2003).Google Scholar