Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:35:13.467Z Has data issue: false hasContentIssue false

Studies on Ion Scattering and Sputtering Processes Relevant to Ion Beam Sputter Deposition of Multicomponent Thin Films

Published online by Cambridge University Press:  25 February 2011

O. Auciello
Affiliation:
N. C. State University, Department of Materials Science and Engineering, Raleigh, NC 27695 Microelectronics Center of North Carolina, Research Triangle Park, NC 27709–2 889
M. S. Ameen
Affiliation:
N. C. State University, Department of Materials Science and Engineering, Raleigh, NC 27695
A. R. Krauss
Affiliation:
Argonne National Laboratory, Chemistry Division, Argonne, IL 36409
A. I. Kingon
Affiliation:
N. C. State University, Department of Materials Science and Engineering, Raleigh, NC 27695
M. A. Ray
Affiliation:
Argonne National Laboratory, Chemistry Division, Argonne, IL 36409
Get access

Abstract

Results from computer simulation and experiments on ion scattering and sputtering processes in ion beam sputter deposition of high Tc superconducting and ferroelectric thin films are presented. It is demonstrated that scattering of neutralized ions from the targets can result in undesirable erosion of, and inert gas incorporation in, the growing films, depending on the ion/target atom mass ratio and ion beam angle of incidence/target/substrate geometry. The studies indicate that sputtering by Kr+ or Xe+ ions is preferable to the most commonly used Ar+ ions, since the undesirable phenomena mentioned above are minimized for the first two ions. These results are used to determine optimum sputter deposition geometry and ion beam parameters for growing multicomponent oxide thin films by ion beam sputter-deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Harper, J. M. E., Colton, R. J., and Feldman, L. C. (Eds.), Amer. Inst. Phys. Conf. Proc. 165 (1988).Google Scholar
2 Margaritondo, G., Joynt, R., and Onellion, M. (Eds.), Amer. Inst. Phys. Conf. Proc. 167 (1989).Google Scholar
3 Kingon, A. I., Auciello, O., Ameen, M. S., Rou, S. H., and Krauss, A. R., Appl. Phys. Lett. 55, 301 (1989).Google Scholar
4 Ameen, M. S., Graettinger, T. M., Auciello, O., Rou, S. H., Krauss, A. R., and Kingon, A. I., Mat. Res. Soc. Symp. Proc. 152, 175 (1989).Google Scholar
5 Biersack, J. P. and Eckstein, W., Appl. Phys. A34, 73 (1984).Google Scholar
6 Sigmund, P., in “Sputtering by Particle Bombarment 1,” Berisch, R. (Ed.), Springer-Verlag (1981), p. 9.Google Scholar
7 Andersen, H. H. and Bay, H. L., in “Sputtering by Particle Bombarment 1,” Berisch, R. (Ed.), Springer-Verlag (1981), p. 145.Google Scholar
8 Feldman, L. C., Mayer, J. W., Fundamentals of Surface and Thin Film Analysis (North Holland, New York 1986).Google Scholar
9 Ameen, M. S., Auciello, O., Kingon, A. I., Krauss, A. R., and Ray, M. A., Amer. Inst. Phys. Conf. Proc. (in press, 1990).Google Scholar
10 Kelly, R., Nucl. Inst. and Methods in Phys. Res. B39,. 43 (1989).Google Scholar