Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:37:45.495Z Has data issue: false hasContentIssue false

Studies of Structural and Electronic Properties of Uranium Compounds, by XANES Spectroscopy

Published online by Cambridge University Press:  26 February 2011

Clara Fillaux
Affiliation:
[email protected], CEA, CEA Marcoule, DEN/DRCP/SCPS, Bagnols sur Cèze, France, 30207, France
Christophe Den Auwer
Affiliation:
[email protected], CEA Marcoule, DEN/DRCP/SCPS, France
Dominique Guillaumont
Affiliation:
[email protected], CEA Marcoule, DEN/DRCP/SCPS, France
Eric Simoni
Affiliation:
[email protected], Institut de Physique Nucléaire d’Orsay, France
Nicole Barré
Affiliation:
[email protected], Institut de Physique Nucléaire d’Orsay, France
David K. Shuh
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, United States
Tolek Tyliszczak
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, United States
Get access

Abstract

X-ray absorption near edge structure (XANES) is a sensitive probe of the electronic structure, and can provide information about the valency, the unoccupied electronic states and the effective charge of the absorbing atom. In this paper, near edge x-ray absorption fine structure spectra are reported at the L3, M5 and N5 thresholds and used to determined structural and electronic properties of U(VI) within uranyl nitrate (UO2(NO3)2.6H2O) and perovskite (Ba2ZnUO6). Experimental data analysis by simulating the absorption edge allows to compare the coordination polyhedrons, identify the electronic transitions and calculate the density of states associated with the absorption spectra. Moreover, a coupling between simulations of the experimental spectra and quantum chemical calculations is performed, in order to improve the model describing the final states and better understand the bonding properties of the cation with the ligand.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Denning, R., Green, J., Hutchings, T., Dallera, C., Tagliaferri, A., Giarda, K., Brookes, N., Braicovich, L., J. Chem. Phys., 117, 8008 (2002).Google Scholar
2. Den Auwer, C., Guillaumont, D., Guilbaud, P., Conradson, S. D., Rehr, J. J., Ankudinov, A., Simoni, E., New J. Chem., 28, 929 (2004).Google Scholar
3. Taylor, J. C. and Mueller, M. H., Acta Cryst., 19, 536 (1965).Google Scholar
4. Simoni, E., Abazli, H., Cousson, A. and Pages, M., Radiochem. Radioanal. Lett., 49 (1), 37 (1981).Google Scholar
5. Den Auwer, C., Simoni, E., Conradson, S. D., Mustre de Leon, J., Moisy, P. and Béres, A., C. R. Acad. Sci. Paris, 3, 327333 (2000).Google Scholar
6. Joly, Y., Phys. Rev. B, 63, 125120125129 (2001).Google Scholar
7. ADF2005.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.Google Scholar
8. van Lenthe, E., Baerends, E. J. and Snijders, J. G., J. Chem. Phys., 101, 9783 (1994).Google Scholar
9. Hudson, E. A., Rehr, J. J. and Bucher, J., Phys. Rev. B, 52, 1381513826 (1995).Google Scholar