Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T07:13:05.651Z Has data issue: false hasContentIssue false

Structure and Dynamics of Propylene Oxide and Trimethylene Oxide Clathrate Hydrates

Published online by Cambridge University Press:  01 February 2011

Inmaculada Peral
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–8562, U.S.A. Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742–2115 U.S.A.
Joseph E. Curtis
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–8562, U.S.A.
Bryan C. Chakoumakos
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 U.S.A.
Camille Y. Jones
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899–8562, U.S.A.
Get access

Abstract

We present results from studies of the structure and dynamics of clathrate hydrates of three cyclic ethers by neutron diffraction and preliminary results on molecular dynamics simulations. Recent results from neutron powder diffraction and quasielastic neutron scattering of studies of propylene oxide (PO, C3H6O) and its isomer trimethyelene oxide (TMO, C3H6O), are compared with structural results obtained previously for tetrahydrofuran (THF, C3H5O). Experimental evidence of distortions of the host structures with temperature is discussed in light of the findings from quasielastic neutron scattering, which indicate distinct regions of high-temperature and low-temperature rotational dynamics and a temperature dependence related to the size of the guest. Preliminary MD results indicate a general expansion of the lattice with temperature resulting in increased volume available to PO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sloan, E.D. Jr, “Clathrate Hydrates of the Natural Gases.” Dekker: New York (1990).Google Scholar
2. Gough, S.R., J. Phys. Chem., 77, 2869 (1973).Google Scholar
3. Ripmeester, J.A., Ratliffe, C. I., “Inclusion Compounds Volume 5; Inorganic and Physical Aspects of Inclusion”, eds. Atwood, J. L., Davies, J. E. D., and MacNicol, D. D. (Oxford University Press, 1991) Chapter 2.Google Scholar
4. Sargent, D. F. and Calvert, L. D., Journal of Physical Chemistry, 70, 26892691 (1966).Google Scholar
5. Jones, C.Y., Marshall, S.L., Chakoumakos, B.C., Rawn, C.J., and Ishii, Y., J. Phys. Chem. B, 107, 6026 (2003).Google Scholar
6. Rondinone, A. J., Chakoumakos, B. C., Rawn, C. J., Ishii, Y., J. Phys. Chem. B 107, 6046 (2003).Google Scholar
8. Copley, J. R. D. and Cook, J. C., J. Chem. Phys., 292, 477485 (2003).Google Scholar
9. MacKerell, A. D. Jr, Bashford, D., Bellott, M., Dunbrack, R. L. Jr, Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E. III, Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. B, 102, 3586 (1998).Google Scholar
10. Tuckerman, M. E., Yarne, D. A., Samuelson, S. O., Hughes, A. L., Martyna, G. J. Comp. Phys. Comm. 128, 333 (2000).Google Scholar
11. Berendsen, H. J. C., Grigera, J. R., and Stroatsma, T. P., J. Phys. Chem. 91, 6269 (1987).Google Scholar
12. Lorentz, H., A. Ann. Phys. 12, 127 (1881).Google Scholar
13. Berthelot, D., C. r. Acad. Sci. Paris, 126, 1703 (1898).Google Scholar
14. Larson, A. C., Von Dreele, R. B., General Structure Analysis System, LAUR 86–748, Los Alamos National Laboratory.Google Scholar
15. Toby, B. H., J. Appl. Cryst. 34, 210 (2001).Google Scholar
16. LeBail, A., Duroy, H., Fourquet, J. L., Mat. Res. Bull. 23, 447452 (1988).Google Scholar
17. Chakoumakos, B. C., Rawn, C. J., Rondinone, A. J., Stern, L. A., Circone, S., Kirby, S. H., Ishii, Y., Jones, C. Y., Toby, B. H., Can. J. Phys. 1/2, 183 (2003).Google Scholar
18. Büeler, B., Enge, A., and Fukuda, K., “Exact volume computation for polytopes: A practical study.” In: Kalai, G. and Ziegler, G.M., editors, “Polytopes - Combinatorics and Computation,” DMV-Seminars Vol. 29, Birkhäuser Verlag, Basel 2000 Google Scholar
19. Data Analysis and Visualization Environment, described at http://www.ncnr.nist.gov/dave. Google Scholar
20. Jones, C. Y. and Peral, I., Amer. Mineral. 89, 1176 (2004).Google Scholar