Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:42:25.586Z Has data issue: false hasContentIssue false

Structural Defects in Thick Ingaas Layers Grown by Lpee on Partially Masked GaAs Substrates

Published online by Cambridge University Press:  03 September 2012

T. BRYSKIEWICZ*
Affiliation:
Crystar,A Johnson Matthey Company, 721 Vanalman Ave. Victoria, BC V8Z 3B6, Canada.
Get access

Abstract

Defect formation in thick InxGa1-xAs layers, 0.06 ≤ x ≤ 0.17, grown by liquid phase electroepitaxy (LPEE) on partially masked GaAs substrates has been studied. The InxGa1-xAs ingots were 6 mm in thickness and, in some cases, more than 53 mm long in one direction. Prior to the LPEE growth, a thin SiO2 layer was deposited on the (100) oriented GaAs substrate by plasma enhanced chemical vapor deposition (PECVD), and patterned by photolithography with oxide free seeding windows of different geometry. The growth of a ternary crystal from a slightly supercooled melt originated in the form of islands within the window areas and extended laterally over the SiO2 layer to result, as the growth proceeded by LPEE, in a continuous layer with no apparent boundaries between merging islands. The two main structural defects have been identified in these compositionally uniform ternary crystals: microtwins and microcracks. They were found to result from the crystal/substrate misfit stress, when insufficiently suppressed by the SiO2 layer, and/or from improper seeding window geometry. The microcrack and microtwin formation in large diameter InxGa1-xAs crystals has been suppressed by the right choice of the seeding window geometry as well as by minimizing damage to the SiO2 layer caused by the H2 atmosphere and high growth temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Otsubo, K., Shoji, H., Kusunoki, T., Suzuki, T., Uchida, T., Ishikawa, H., Proc. Int. Conf. Solid State Devices and Materials. Yokohama, 1996, pp. 649651, and references therein.Google Scholar
2 Hoke, W.E., Lyman, P.S., Mosca, J.J., Hendriks, H.T., Torabi, A., Bonner, W.A., Lent, B., Chou, L.-J., and Hsieh, K.C., J. Appl. Phys. 81, 15 January, 1997.Google Scholar
3 Kusunoki, T., Nakajima, K., Kusunoki, T., and Katoh, T., J. Cryst. Growth, 25, 1996, pp. 357361, and references therein.Google Scholar
4 Bonner, W.A., Lent, B., Freschi, D.J., and Hoke, W., in: Producibility of II-VI Materials and Devices. SPIE 2228, 1994, pp. 3343.Google Scholar
5 Bryskiewicz, T., and Edelman, P., J. Appl. Phys. 68, 1990, pp. 30183020.Google Scholar
6 J.-Hu, S., unpublished.Google Scholar
7 Bryskiewicz, T., Jiran, E., Bryskiewicz, B., and Buchanan, M., Mat. Res. Soc. Symp. Proc. 340, 1994, pp. 367372.Google Scholar
8 Bryskiewicz, B., Bryskiewicz, T., and Jiran, E., Electron, J.. Materials 24, 1995. pp.203209.Google Scholar
9 McCaffrey, J.P., Bryskiewicz, B., Bryskiewicz, T., and Jiran, E., Appl. Phys. Lett. 64, 1994, pp.23442346.Google Scholar
10 Bergmann, R.,. J. Cryst. Growth 110, 1991, pp.823834, and references therein.Google Scholar
11 Suzuki, Y., and Nishinaga, T., Jap. J. Appl. Phys. 28, 1989, pp.440445.Google Scholar
12 Suzuki, Y., and Nishinaga, T., Jap. J. Appl. Phys. 29, 1990, pp.26852689.Google Scholar
13 Suzuki, Y., Nishinaga, T., and Sanada, T., J. Cryst. Growth 99, 1990, pp.229234.Google Scholar
14 Sakai, S., Matyi, R.J., and Shichijo, H., J. Appl. Phys. 63, 1988,10751079.Google Scholar
15 Nishinaga, T., Nakano, T., and Zhang, Suian, Jap. J. Appl. Phys. 27, 1988, pp. L964L967.Google Scholar
16 Ujiie, Y., and Nishinaga, T., Jap. J. Appl. Phys. 28, 1989, pp. L337339.Google Scholar
17 Zang, S., and Nishinaga, T., J. Cryst. Growth 99, 1990, pp.292296.Google Scholar
18 Zhang, S., and Nishinaga, T., Jap. J. Appl. Phys. 29, 1990, pp.545550.Google Scholar
19 Hansson, P.O., Bergmann, R., and Bauser, E., J. Cryst. Growth 114, 1991, pp.573580.Google Scholar
20 Hansson, P.O., Gustasson, A., Albrecht, M., Bergmann, R., Strunk, H.P. and Bauser, E., J. Cryst. Growth 121, 1992,790794.Google Scholar
21 Sakai, S., Ohashi, Y., and Shintani, Y., J. Appl. Phys. 70, 1991, pp.48994902.Google Scholar
22 Sakai, S. and Ohashi, Y., Jap. J. Appl. Phys. 33, 1994, pp.2327.Google Scholar
23 Bryskiewicz, T., Boucher, C.F., Jr., Lagowski, J., and Gatos, H.C., J. Cryst. Growth. 82, 1987, pp.279288.Google Scholar
24 Bedair, S.M., Morrison, C., Fang, R., and El-Masry, N.A., J. Appl. Phys. 51, 1980, pp.54135418.Google Scholar
25 Bryskiewicz, T., and Bonner, W.A., unpublished.Google Scholar
26 Luryi, S., and Suhir, E., Appl. Phys. Lett. 49, 1986, pp.140142.Google Scholar
27 Atkinson, A., Jain, S.C., and Harker, A.H., J. Appl. Phys. 77, 1995, pp.19071913.Google Scholar
28 Bryskiewicz, T., Appl. Phys. Lett. 66, 1995, pp.12371239.Google Scholar
29 Ettenberg, M., Nuese, C.J., Appert, J.R., Gannon, J.J., and Enstrom, R.E., J. Electron. Materials 4, 1975, pp.3766.Google Scholar
30 Bryskiewicz, B., and Mallard, R., unpublished.Google Scholar