Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T21:27:26.754Z Has data issue: false hasContentIssue false

Structural Characterization of Reactive Ion Etched Semiconductor Nanostructures Using X-Ray Reciprocal Space Mapping

Published online by Cambridge University Press:  15 February 2011

G. Bauer
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
A. A. Darhuber
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
V. Holy
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
Get access

Abstract

We have studied GaAs/AlAs periodic quantum dot arrays using high resolution x-ray diffraction (reciprocal space mapping) around the (004) and (113) reciprocal lattice points. From the distribution of the diffracted intensities we deduced the average strain status of the dots. From the numerical simulations it is evident that random elastic strain fields are present, which extend through almost the entire volume of the quantum dot. The simulations of the x-ray measurements revealed that the crystalline part of the dots is considerably smaller as scanning electron micrographs would indicate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Arakawa, Y. and Yariv, A., IEEE J. Quantum Electronics QE–22, 1887 (1986)Google Scholar
[2] Benisty, H., Torres, C. M. Sotomayor, and Weisbuch, C., Phys. Rev. B 44, 10945 (1991).Google Scholar
[3] De Caro, L. and Tapfer, L., Phys. Rev. B 49, 11127 (1994).Google Scholar
[4] Tapfer, L. and Grambow, P., Appl. Phys. A 50, 3 (1990).Google Scholar
[5] Macrander, A. T. and Slusky, S. E. G., Appl. Phys. Lett. 6, 443 (1990).Google Scholar
[6] Holy, V., Tapfer, L., Koppensteiner, E., Bauer, G., Lage, H., Brandt, O., and Ploog, K., Appl. Phys. Lett. 63, 3140 (1993).Google Scholar
[7] Sluis, P. v. d., Verheijen, M. J., and Haisma, J., Appl.Phys. Lett. 64, 3605 (1994).Google Scholar
[8] Darhuber, A. A., Koppensteiner, E., Straub, H., Brunthaler, G., Faschinger, W., Bauer, G., J. Appl. Phys. 76, 7816 (1994).Google Scholar
[9] Darhuber, A. A., Bauer, G., Wang, P. D., Song, Y. P., Torres, C. M. Sotomayor, Holland, M. C., Appl. Phys. Lett. 66, 947 (1995).Google Scholar
[10] Darhuber, A. A., Bauer, G., Wang, P. D., Song, Y. P., Torres, C. M. Sotomayor, Holland, M. C., J. Phys. D 28, A195 (1994).Google Scholar
[11] Fewster, P. F., Semicond. Sci. Technol. 8, 1915 (1993).Google Scholar
[12] Krivoglaz, M. A., Theory of X-Ray and Thermal Neutron Scattering by Real Crystals (Plenum, New York, 1969).Google Scholar
[13] Holy, V., Wolf, K., Kastner, M., Stanzl, H., and Gebhardt, W., J. Appl. Cryst. 27, 551 (1994).Google Scholar
[14] Nanostructure Physics and Fabrication, edited by Reed, M. A. and Kirk, W. P. (Academic Press, Boston, 1989).Google Scholar
[15] Nanostructures and Mesoscopic Systems, edited by Kirk, W. P. and Reed, M. A. (Academic Press, Boston, 1992).Google Scholar
[16] Qiang, H., Pollak, F. H., Tang, Y. S., Wang, P. D., and Torres, C. M. Sotomayor, Appl. Phys.Lett. 64, 2830 (1994).Google Scholar
[17] Clausen, E. M., Craighead, H. G., Harbison, J. P., Scherer, A., Schiavone, L. M., Gaag, B. V. d., and Florez, L. T., J. Vac. Sci. Technol. B 7, 2011 (1989).Google Scholar
[18] Kash, K., Gaag, B. P. v. d., Mahoney, D., Gozdz, A. S., Florez, L. T., Harbison, J. P., and Sturge, M.D., Phys. Rev. Lett. 67, 1326 (1991).Google Scholar
[19] Tan, I–H., Lishan, D., Mirin, R., Jayaraman, V., Yasuda, T., Hu, E. L., and Bowers, J., Appl.Phys. Lett. 59, 1875 (1991).Google Scholar
[20] Torres, C. M. Sotomayor, Leitch, W. E., Lootens, D., Wang, P. D., Williams, G. M., Thoms, S., Wallace, H., Van Daele, P., Cullis, A. G., Stanley, C. R., Demeester, P., and Beaumont, S. P., in Nanostructures and Mesoscopic Systems, edited by Kirk, W. P. and Reed, M. A. (Academic Press, Boston, 1992), pp. 455461.Google Scholar
[21] Wang, P. D., Foad, M. A., Torres, C. M. Sotomayor, Thoms, S., Watt, M., Cheung, R., Wilkinson, C. D.W., and Beaumont, S. P., J. Appl. Phys. 71, 3754 (1992).Google Scholar
[22] Wang, P. D. and Torres, C. M. Sotomayor, J. Appl. Phys. 74, 5047 (1993).Google Scholar
[23] Song, Y. P., Wang, P. D., Torres, C. M. Sotomayor, and Wilkinson, C. D. W., Semicond.Sci. Technol. 10, 1404 (1995).Google Scholar
[24] Holy, V., Darhuber, A. A., Bauer, G., Wang, P. D., Song, Y. P., Torres, C. M. Sotomayor, Holland, M.C., Phys. Rev. B 52, 8348 (1995).Google Scholar
[25] Cowley, J. M., Diffraction Physics, (North-Holland, Amsterdam, 1975).Google Scholar
[26] Levine, D., Steinhardt, P. J., Phys. Rev. B 34, 596 (1985).Google Scholar
[27] Socolar, J. E. S. and Steinhardt, P. J., Phys. Rev. B 34, 617 (1985).Google Scholar
[28] Yablonovitch, E., J. Opt. Soc. Am. B 10, 283 (1993).Google Scholar
[29] Wendt, J. R., Wawter, G. A., Gourley, P. L., Brennan, T. M., Hammons, B. E., Vac, J., Sci. Technol. B 11, 2637 (1993).Google Scholar
[30] Kapon, E. in Quantum Well Lasers, ed. by Zory, Peter S. (Academic Press 1993).Google Scholar
[31] Wegscheider, W., Pfeiffer, L., West, K., Leibenguth, R. E., Appl. Phys. Lett. 65, 2510 (1994).Google Scholar
[32] Mui, D. S. L., Leonard, D., Coldren, L. A., Petroff, P. M., Appl. Phys. Lett. 66, 1620 (1995).Google Scholar
[33] R. Nötzel, Temmyo, J., and Tamamura, T., Nature 369, 131 (1994); Appl. Phys. Lett. 64,3557 (1995).Google Scholar