Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:41:42.415Z Has data issue: false hasContentIssue false

Structural Characterization of Laser-Annealed Sputtered Poly-Si Films for High Mobility Tfts

Published online by Cambridge University Press:  25 February 2011

Akio Okamoto
Affiliation:
NTT Applied Electronics Laboratories 3-9-11, Midori-cho, Musashino-shi, Tokyo 180, Japan
Seiiti Shirai
Affiliation:
NTT Applied Electronics Laboratories 3-9-11, Midori-cho, Musashino-shi, Tokyo 180, Japan
Shiro Suyama
Affiliation:
NTT Applied Electronics Laboratories 3-9-11, Midori-cho, Musashino-shi, Tokyo 180, Japan
Tadashi Serikawa
Affiliation:
NTT Applied Electronics Laboratories 3-9-11, Midori-cho, Musashino-shi, Tokyo 180, Japan
Get access

Abstract

A high mobility of 390 cm2/Vs was successfully obtained for sputtered films, compared with 100 cm2/Vs for CVD films. Then, structural characterization of laser-annealed sputtered silicon films were performed, and compared with that of CVD films. TEM observations show a structural difference between the two film types. In sputtered films, many fine grain-like regions which have slightly different crystal orientation from surrounding regions are observed. On the other hand, in the CVD films, defects are widely spread over the film. X-ray diffraction, Raman scattering, and SIMS yield almost the same results in both films. The above-mentioned structural difference is thought to be essential to obtain high mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morozumi, S., Oguchi, K., Yazawa, S., Kodaira, T., Oshima, H. and Mano, T., 1983 SID Int. Symp. Digest of Technical Papers, (1983), p. 156.Google Scholar
2. Credelle, T. L., Proc. Int. Display Res. Conf. (1988), p. 208.Google Scholar
3. Malhi, S. D. S., Shichijo, H., Banerjee, S. K., Sundarson, R., Elahy, M., Pollack, G. P., Richardson, W., Shah, A. H., Hite, L. R. and Womack, R. H., IEEE Trans. Electron Devices, ED–32, 258 (1985).Google Scholar
4. Fehlner, F. P., Dumbaugh, W. H. and Miller, R. A., Proc. Int. Display Res. Conf. (1986), p. 200.Google Scholar
5. Hayashi, H., Noguchi, T., Ohshima, T., Negishi, M., and Hayashi, Y., 18 th Int. Conf. Solid State Devices and Materials, (1986), p.549.Google Scholar
6. Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., IEEE Trans. Electron Devices, ED–36, 1928 (1989).Google Scholar
7. Serikawa, T., Shirai, S., Okamoto, A., and Suyama, S., Jpn. J. Appl. Phys., 28, L1871 (1989).Google Scholar
8. Nakazawa, K., Tanaka, K., Suyama, S., kato, K., and Kohda, S., Society Information Display SID ‘90 Digest (1990) 311.Google Scholar
9. Thornton, J. A., J. Vac. Sci. Thechnol., 11, 666 (1974).Google Scholar
10. Okamoto, A. and Serikawa, T., J. Electrochem. Soc., 134, 1479 (1987).Google Scholar
11. Lin, L., Chen, P., Tsien, P., and Li, Z., Electron. Lett., 24, 23 (1988).Google Scholar