Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:03:36.394Z Has data issue: false hasContentIssue false

Stretchable Polymeric Neural Electrode Array: Toward a Reliable Neural Interface

Published online by Cambridge University Press:  04 June 2015

Liang Guo*
Affiliation:
Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, U.S.A. Department of Neuroscience, The Ohio State University, 2015 Neil Ave, Columbus, OH 43210, U.S.A.
Get access

Abstract

Conducting polymers are often employed as coatings on smooth metal electrodes to improve the electrode performance with respect to the signal-to-noise ratio for neural recording, charge-injection capacity for neural stimulation, and inducement of neural growth for electrode-tissue integration. However, adhesion of conducting polymer coatings on metal electrodes is poor, making the coating less durable and the electrical property of the electrode less stable. Moreover, conventional conducting polymers have relative low conductance, preventing their direct use as the electrode and lead material; and they are brittle, making it difficult for flexible neural electrodes to incorporate conducting polymer coatings. We have developed a new polypyrrole/polyol-borate composite film with concurrent excellent electrical and mechanical properties. We further developed a method to fabricate a stretchable multielectrode array using this new material as the sole conductor for both electrodes and leads, in contrast with the conventional approach of incorporating conducting polymers only through coating on non-stretchable metal electrodes. The resulting stretchable polymeric multielectrode array (SPMEA) was stretchable up to 23% uniaxial tensile strain with minimal losses in electrical conductivity. Electrochemical testing revealed the SPMEA’s impressive advantage for recording local field neural potentials and for epimysial stimulation of denervated skeletal muscles. As a neural interface engineer, I would also like to compare the compliant neural interfacing technology to other technologies, such as optogenetics, radiogenetics, and even a living neural interface that is currently under development in our lab.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

"Advisory Committee to the NIH Director INTERIM REPORT, Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group," National Institutes of Health, September 16, 2013 2013.Google Scholar
He, B., Coleman, T., Genin, G. M., Glover, G., Hu, X., Johnson, N., et al. , IEEE Trans. on Biomed. Eng., vol. 60, 2013.Google Scholar
Birmingham, K., Gradinaru, V., Anikeeva, P., Grill, W. M., Pikov, V., McLaughlin, B., et al. , Nature Reviews Drug Discovery, vol. 13, pp. 399400, 2014.CrossRefGoogle Scholar
Markram, H., Scientific American, vol. 306, pp. 5055, 2012.CrossRefGoogle Scholar
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., et al. , Neuroimage, vol. 62, pp. 22222231, 2012.CrossRefGoogle Scholar
Banks, J., Pulse, IEEE, vol. 6, pp. 1015, 2015.CrossRefGoogle Scholar
Maghribi, M., Hamilton, J., Polla, D., Rose, K., Wilson, T., and Krulevitch, P., in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on , 2002, pp. 8083.Google Scholar
Lacour, S. P., Tsay, C., Wagner, S., Yu, Z., and Morrison, B., in Sensors, 2005 IEEE, 2005, p. 4 pp.Google Scholar
Xu, L., Gutbrod, S. R., Bonifas, A. P., Su, Y., Sulkin, M. S., Lu, N., et al. , Nature communications, vol. 5, 2014.Google Scholar
Kim, D.-H., Viventi, J., Amsden, J. J., Xiao, J., Vigeland, L., Kim, Y.-S., et al. , Nature materials, vol. 9, pp. 511517, 2010.CrossRefGoogle Scholar
Guo, L., Guvanasen, G. S., Liu, X., Tuthill, C., Nichols, T. R., and DeWeerth, S. P., IEEE Transactions on Biomedical Circuits and Systems, vol. 7, pp. 110, Feb 2013.Google Scholar
Kotov, N. A., Winter, J. O., Clements, I. P., Jan, E., Timko, B. P., Campidelli, S., et al. , Advanced Materials, vol. 21, pp. 39704004, 2009.CrossRefGoogle Scholar
Kim, G. B., Fattahi, P., and Abidian, M. R., Biomaterials Surface Science, pp. 539565, 2013.Google Scholar
Guo, L., Ma, M., Zhang, N., Langer, R., and Anderson, D. G., Adv Mater, vol. 26, pp. 1427–33, Mar 2014.CrossRefGoogle Scholar
Cheung, K. C., Biomedical microdevices, vol. 9, pp. 923938, 2007.CrossRefGoogle Scholar
Abidian, M. R. and Martin, D. C., Advanced Functional Materials, vol. 19, pp. 573585, 2009.CrossRefGoogle Scholar
Ware, T., Simon, D., Rennaker, R. L., and Voit, W., Polymer Reviews, vol. 53, pp. 108129, 2013.CrossRefGoogle Scholar
Lacour, S. P., Benmerah, S., Tarte, E., FitzGerald, J., Serra, J., McMahon, S., et al. , Medical & biological engineering & computing, vol. 48, pp. 945954, 2010.CrossRefGoogle Scholar
Lacour, S. P., Chan, D., Wagner, S., Li, T., and Suo, Z., Applied Physics Letters, vol. 88, p.204103, 2006.Google Scholar
Guo, L., Meacham, K. W., Hochman, S., and DeWeerth, S. P., IEEE Trans Biomed Eng, vol. 57, pp. 2485–94, Oct 2010.Google Scholar
Ravichandran, R., Sundarrajan, S., Venugopal, J. R., Mukherjee, S., and Ramakrishna, S., Journal of the Royal Society Interface, vol. 7, pp. S559S579, Oct 6 2010.CrossRefGoogle Scholar
Green, R. A., Lovell, N. H., Wallace, G. G., and Poole-Warren, L. A., Biomaterials, vol. 29, pp. 33933399, Aug-Sep 2008.CrossRefGoogle Scholar
Guimard, N. K., Gomez, N., and Schmidt, C. E., Progress in Polymer Science, vol. 32, pp. 876921, Aug-Sep 2007.CrossRefGoogle Scholar
Khodagholy, D., Doublet, T., Gurfinkel, M., Quilichini, P., Ismailova, E., Leleux, P., et al. , Advanced Materials, vol. 23, pp. H268H272, 2011.CrossRefGoogle Scholar
Kozai, T. D. Y., Langhals, N. B., Patel, P. R., Deng, X., Zhang, H., Smith, K. L., et al. , Nature materials, vol. 11, pp. 10651073, 2012.CrossRefGoogle Scholar
Keohan, F., Wei, X. F., Wongsarnpigoon, A., Lazaro, E., Darga, J. E., and Grill, W. M., Journal of Biomaterials Science, Polymer Edition, vol. 18, pp. 10571073, 2007.CrossRefGoogle Scholar
Blau, A., Murr, A., Wolff, S., Sernagor, E., Medini, P., Iurilli, G., et al. , Biomaterials, vol. 32, pp. 17781786, 2011.CrossRefGoogle Scholar
Ma, M. M., Guo, L., Anderson, D. G., and Langer, R., Science, vol. 339, pp. 186189, Jan 11 2013.CrossRefGoogle Scholar
Minev, I. and Lacour, S., Applied Physics Letters, vol. 97, p. 043707, 2010.CrossRefGoogle Scholar
Guo, L., "High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing," Georgia Institute of Technology, 2011.Google Scholar
Hwang, S. W., Song, J. K., Huang, X., Cheng, H., Kang, S. K., Kim, B. H., et al. , Advanced Materials, vol. 26, pp. 39053911, 2014.CrossRefGoogle Scholar
de Jonge, L. T., Leeuwenburgh, S. C., Wolke, J. G., and Jansen, J. A., Pharmaceutical research, vol. 25, pp. 23572369, 2008.CrossRefGoogle Scholar
Castner, D. G. and Ratner, B. D., Surface Science, vol. 500, pp. 2860, 2002.CrossRefGoogle Scholar
Kane-Maguire, L. and Wallace, G., Synthetic metals, vol. 119, pp. 3942, 2001.CrossRefGoogle Scholar
He, W. and Bellamkonda, R. V., Biomaterials, vol. 26, pp. 29832990, 2005.CrossRefGoogle Scholar
Ateh, D., Navsaria, H., and Vadgama, P., Journal of the royal society interface, vol. 3, pp. 741752, 2006.CrossRefGoogle Scholar
George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., et al. , Biomaterials, vol. 26, pp. 35113519, 2005.CrossRefGoogle Scholar
Schmidt, C. E., Shastri, V. R., Vacanti, J. P., and Langer, R., Proceedings of the National Academy of Sciences, vol. 94, pp. 89488953, 1997.CrossRefGoogle Scholar
Kotwal, A. and Schmidt, C. E., Biomaterials, vol. 22, pp. 10551064, 2001.CrossRefGoogle ScholarPubMed
Polikov, V. S., Tresco, P. A., and Reichert, W. M., Journal of neuroscience methods, vol. 148, pp. 118, 2005.CrossRefGoogle Scholar
Cui, X., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., et al. , Journal of biomedical materials research, vol. 56, pp. 261272, 2001.3.0.CO;2-I>CrossRefGoogle Scholar
Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J. H., Qing, Q., et al. , Nature materials, vol. 11, pp. 986994, 2012.CrossRefGoogle Scholar
Gomez, N., Lee, J. Y., Nickels, J. D., and Schmidt, C. E., Advanced functional materials, vol. 17, pp. 16451653, 2007.CrossRefGoogle Scholar
LaVan, D. A., George, P. M., and Langer, R., Angewandte Chemie, vol. 115, pp. 13001303, 2003.CrossRefGoogle Scholar
Münstedt, H., Polymer, vol. 27, pp. 899904, 1986.CrossRefGoogle Scholar
Sun, B., Jones, J., Burford, R., and Skyllas-Kazacos, M., Journal of materials Science, vol. 24, pp. 40244029, 1989.CrossRefGoogle Scholar
Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M., and Pralle, A., Nature nanotechnology, vol. 5, pp. 602606, 2010.CrossRefGoogle Scholar
Marin, C. and Fernandez, E., Front Neuroeng, vol. 3, p. 8, 2010.CrossRefGoogle Scholar
Fenno, L., Yizhar, O., and Deisseroth, K., Annu Rev Neurosci, vol. 34, pp. 389412, 2011.CrossRefGoogle Scholar
Bernstein, J. G., Garrity, P. A., and Boyden, E. S., Current opinion in neurobiology, vol. 22, pp. 6171, 2012.CrossRefGoogle Scholar
Proft, J. and Weiss, N., Communicative & integrative biology, vol. 5, pp. 227229, 2012.CrossRefGoogle Scholar
Alivisatos, A. P., Andrews, A. M., Boyden, E. S., Chun, M., Church, G. M., Deisseroth, K., et al. , ACS Nano, vol. 7, pp. 1850–66, Mar 26 2013.CrossRefGoogle Scholar
Stanley, S. A., Gagner, J. E., Damanpour, S., Yoshida, M., Dordick, J. S., and Friedman, J. M., Science, vol. 336, pp. 604608, 2012.CrossRefGoogle Scholar
Rosen, M. R., Brink, P. R., Cohen, I. S., and Robinson, R. B., Cardiovascular Research, vol. 64, pp. 1223, Oct 1 2004.CrossRefGoogle Scholar
Lu, T. K., Khalil, A. S., and Collins, J. J., Nature Biotechnology, vol. 27, pp. 11391150, Dec 2009.CrossRefGoogle Scholar
Mukherji, S. and van Oudenaarden, A., Nature reviews. Genetics, vol. 10, pp. 859–71, Dec 2009.CrossRefGoogle Scholar
Langer, R. and Vacanti, J. P., "Tissue Engineering," Science, vol. 260, pp. 920926, May 14 1993.Google Scholar
Daniels, M. P., Lowe, B. T., Shah, S., Ma, J., Samuelsson, S. J., Lugo, B., et al. , Microsc Res Tech, vol. 49, pp. 2637, Apr 1 2000.3.0.CO;2-8>CrossRefGoogle Scholar
Das, M., Rumsey, J. W., Gregory, C. A., Bhargava, N., Kang, J. F., Molnar, P., et al. , Neuroscience, vol. 146, pp. 481–8, May 11 2007.CrossRefGoogle Scholar
Bellamkonda, R. V., Biomaterials, vol. 27, pp. 3515–8, Jul 2006.Google Scholar
Daly, W., Yao, L., Zeugolis, D., Windebank, A., and Pandit, A., J R Soc Interface, vol. 9, pp. 202–21, Feb 7 2012.CrossRefGoogle Scholar
Taylor, A. M., Blurton-Jones, M., Rhee, S. W., Cribbs, D. H., Cotman, C. W., and Jeon, N. L., Nat Methods, vol. 2, pp. 599605, Aug 2005.CrossRefGoogle Scholar
David, S. and Aguayo, A. J., Science, vol. 214, pp. 931933, 1981.CrossRefGoogle Scholar
Kennedy, P. R., Journal of Neuroscience Methods, vol. 29, pp. 181193, Sep 1989.CrossRefGoogle Scholar
Benfey, M. and Aguayo, A. J., Nature, vol. 296, pp. 150152, 1982.CrossRefGoogle Scholar