Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:40:00.006Z Has data issue: false hasContentIssue false

Stress Patterns of Deformation Induced Planar Dislocation Boundaries

Published online by Cambridge University Press:  14 March 2011

Shafique M. A. Khan
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
Hussein M. Zbib
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
Darcy A. Hughes
Affiliation:
Center for Materials and Engineering Sciences, Sandia National Laboratories, Livermore, CA 94550, USA
Get access

Abstract

A Multi-scale model coupling discrete dislocation dynamics with continuum plasticity and finite element analysis is used to study the self-stress field of geometrically necessary (dislocation) boundaries (GNBs). The results for a single GNB are presented here. The internal structure of the GNB is obtained from the Frank's formula using experimentally measured misorientation angle/axis pair as the input. Several different types of model boundary conditions (using FEA) are analyzed together with the effect of different parameters like the domain length and mesh sensitivity. It is shown that choosing the right boundary conditions for the FEA strongly affects the predicted internal stress fields of these dislocation boundaries, particularly the long-range effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mughrabi, H., Revue Phys., 23, 367, (1988).Google Scholar
2. Ungar, T., Biermann, H., Mughrabi, H., Mater. Sci. Eng., A164, 175, (1993).Google Scholar
3. Kuhlmann-Wilsdorf, D., Wilsdorf, H. G. F., Wert, J. A., Scripta Metall. et Mater., 31(6), 729, (1994).Google Scholar
4. Kuhlmann-Wilsdorf, D., Phys. Stat. Sol., A149, 225, (1995).Google Scholar
5. Hughes, D. A., Acta Metall. Mater., 41(5), 1421, (1993).Google Scholar
6. Hansen, N., Hughes, D. A., Phys. Stat. Sol., B149, 155, (1995).Google Scholar
7. Hughes, D. A., Hansen, N., Acta Mater., 48(11), 2985, (2000).Google Scholar
8. Frank, F. C., Report on the conference on defects in crystalline solids, Physical Society, London (1954), p.150.Google Scholar
9. Hughes, D. A., Khan, S. M. A., Godfrey, A., Zbib, H. M., Mater. Sci. Eng., A, in press, (2001).Google Scholar
10. Zbib, H. M., Rhee, M., Hirth, J. P., Advances in Engineering Plasticity and its Applications, edited by Abe, and Tusta, T., (Elsevier Science Ltd, NY) 15, (1996).Google Scholar
11. Zbib, H. M., Rhee, M., Hirth, J. P., Int. J. Mech. Sci., 40, 113, (1998).Google Scholar
12. Rheee, M., Zbib, H. M., Hirth, J. P., Huang, H., Rubia, T. D. de La, Modeling and Simulations in Maters. Sci. & Eng., 6, 467, (1998).Google Scholar
13. Yasin, H., Zbib, H. M., Khaleel, M. A., Mater. Sci. Eng., A, in press, 2001.Google Scholar
14. Zbib, H. M., Rubia, T. D. de La, submitted, Int. J. Plasticity (2001).Google Scholar
15. Hirth, J. P., Lothe, J., Theory of Dislocations, 2nd Ed. (John Wiley & Sons, 1982) p.731.Google Scholar
16. Saada, G., Bouchaud, E., Acta. Metall. Mater., 41(7), 2173, (1993).Google Scholar
17. Lubarda, V. A., Blume, J. A., Needleman, A., Acta. Metall. Mater., 41(2), 625, (1993).Google Scholar