Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:04:29.635Z Has data issue: false hasContentIssue false

Strain Analysis on MBE Grown InAs/AlSb Ultrathin-Layer Superlattices Using Raman Scattering

Published online by Cambridge University Press:  25 February 2011

Mitsuaki Yano
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya 5–16–1, Osaka 535, Japan
Hiroshi Furuse
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya 5–16–1, Osaka 535, Japan
Masaru Okuizumi
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya 5–16–1, Osaka 535, Japan
Masataka Inoue
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya 5–16–1, Osaka 535, Japan
Get access

Abstract

This paper describes an experimental analysis of strained InAs/AlSb ultrathin-layer superlattices (ULSs) grown by MBE. Interface bonds of InSb or AlAs were selectively made in the ULSs by controlling the beam supply sequence during growth. Structural analysis was performed for ULSs on both InAs and AlSb buffer layers using Raman scattering. This analysis revealed that each constituent in the ULSs was relaxed individually only when the AlAs interface bond was combined with the AlSb buffer layer. Other combinations of the interface bond and buffer layer, however, resulted in a free-standing superlattice structure. These experimental results are consistent with the interface dependence of electron mobility reported for InAs/AlSb single quantum well structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luo, L.F., Beresford, R., Wang, W.I., and Munekata, H., Appl. Phys. Lett. 55, 789 (1989).Google Scholar
2. Yoh, K., Moriuchi, T., Yano, M., and Inoue, M., J. Cryst. Growth 111, 643 (1991).Google Scholar
3. Pekarik, J.J., Kroemer, H., and English, J.H., J. Vac. Sci. Technol. B10, 1032 (1992).Google Scholar
4. Tuttle, G., Kroemer, H., and English, J.H., J. Appl. Phys. 15, 5239 (1989).Google Scholar
5. Iwai, Y., Yano, M., Hagiwara, R., and Inoue, M., Surf. Sci. 267, 434 (1992).Google Scholar
6. Yano, M., Ashida, M., Iwai, Y., and Inoue, M., Appl. Surf. Sci. 41/42, 457 (1989).Google Scholar
7. Yano, M., Yokose, H., Iwai, Y., and Inoue, M., J. Cryst. Growth 111, 609 (1991).Google Scholar
8. Yano, M., Furuse, H., Iwai, Y., Yoh, K. and Inoue, M., in Tech. Digest of 7th International Conf. on Molecular Beam Epitaxy, Schwabisch Gmund, 1992.Google Scholar
9. Aspnes, D.E., and Studna, A.A., Phys. Rev. B27, 985 (1983).Google Scholar
10. Rytov, S.M., Sov. Phys.-Acoust. 2, 68 (1956).Google Scholar
ll. Cederia, F., Buchenauer, C.J., Pollak, F.H., and Cardona, M., Phys. Rev. B5, 580 (1972).Google Scholar
12. Nakayama, M., Kubota, K., Kanata, T., Kato, H., Chika, S., and Sano, N., J. Appl. Phys. 58, 4342 (1985).Google Scholar
13. Aoki, K., Anastassakis, E., and Cardona, M., Phys. Rev. B30, 681 (1984).Google Scholar
14. Cederia, F., Buchenauer, C.J., Pollak, F.H., and Cardona, M., Phys. Rev. B5, 580 (1972).Google Scholar
15. Balslev, I., Phys. Stat. Sol. B61, 207 (1984).Google Scholar
16. Osbourn, G.C., J. Appl. Phys. 53, 1586 (1982).Google Scholar