Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:52:11.478Z Has data issue: false hasContentIssue false

Solid-State Field-Controlled Electron Emission: An alternative to thermionic and field-emission

Published online by Cambridge University Press:  14 March 2011

Vu Thien Binh
Affiliation:
Laboratoire d'Emission Electronique, DPM-CNRS, University Claude Bernard Lyon 1, 69622, Villeurbanne, France
J.P. Dupin
Affiliation:
Laboratoire d'Emission Electronique, DPM-CNRS, University Claude Bernard Lyon 1, 69622, Villeurbanne, France
P. Thevenard
Affiliation:
Laboratoire d'Emission Electronique, DPM-CNRS, University Claude Bernard Lyon 1, 69622, Villeurbanne, France
D. Guillot
Affiliation:
Laboratoire d'Emission Electronique, DPM-CNRS, University Claude Bernard Lyon 1, 69622, Villeurbanne, France
J.C. Plenet
Affiliation:
Laboratoire d'Emission Electronique, DPM-CNRS, University Claude Bernard Lyon 1, 69622, Villeurbanne, France
Get access

Abstract

In the solid-state field-controlled emitter (SSE), the emission barrier, which is the factor of utmost importance for surface electron emission, is tailored by a controlled extrinsic parameter like the injected space charge located near the surface. This is done by depositing an ultra-thin wide band-gap semiconductor layer on a metallic surface. It is an alternative approach to the thermionic or field emission for which the work function value is intrinsic to the material used. The emission current measurements from the SSE cold cathodes show stable emission, at low applied field (≈50 V/μm) and in poor vacuum (≈10−7 Torr). The new emission mechanism has been modeled, the calculations and the theoretical analysis confirm the experimental results. The fabrication of the SSE, either by a sputter deposition in vacuum or by a sol-gel technique, meets most of the demands specific to high throughput fabrication of cold cathodes with large emitting area dedicated to applications in vacuum microelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binh, Vu Thien, et al. , J. Vac. Sci. Technol., B18(2), Mar/Apr 2000; patent #99 06 254 (1999)Google Scholar
2. Geis, M.W. et al. , Nature, 393, 431 (1998); P.H. Cutler, N.M. Miskovsky, P.B. Lerner and M.S. Chung, Appl. Surf. Science, 146, 126 (1999); K.A. Dean and B.R. Chalamala, Appl. Phys. Lett., 76, 375 (2000).Google Scholar
3. Binh, Vu Thien and Adessi, Ch., Phys. Rev. Letters (in press).Google Scholar
4. Sze, S.M., Physics of Semiconductor Devices, Wiley Interscience Publ.,1981, NY, USA.Google Scholar
5. Adessi, Ch. and Devel, M., Ultramicroscopy in press.Google Scholar
6. Swanson, L.W. and Bell, A.E., in Adv. in Electr. and Electron Physics, Marton, L. Ed., Acad. Press, New York, Vol. 32, 193 (1973).Google Scholar
7. Thevenard, P., Dupin, J.P., Binh, Vu Thien, Purcell, S.T., Semet, V., Journet, C., this proceeding.Google Scholar
8. Plenet, J.C. and Binh, Vu Thien, patent pending #99 14 474 (1999).Google Scholar
9. Bahtat, A., et al. , J. of Non-Cryst.Solids, 202, 16 (1996).Google Scholar
10. Plenet, J.C., et al. , Opt. Mat., 13, 411 (2000).Google Scholar
11. Binh, Vu Thien, et al. , Appl. Phys. Lett., 73, 2048 (1998).Google Scholar