Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T07:33:00.190Z Has data issue: false hasContentIssue false

Solar Cells Based on PVD Grown CuGaSe2 – Absorber and Device Properties

Published online by Cambridge University Press:  21 March 2011

S. Schuler
Affiliation:
Hahn-Meitner-Institut Berlin, Glienickerstr. 100, 14109 Berlin, Germany
S. Nishiwaki
Affiliation:
Hahn-Meitner-Institut Berlin, Glienickerstr. 100, 14109 Berlin, Germany
M. Dziedzina
Affiliation:
Hahn-Meitner-Institut Berlin, Glienickerstr. 100, 14109 Berlin, Germany
R. Klenk
Affiliation:
Hahn-Meitner-Institut Berlin, Glienickerstr. 100, 14109 Berlin, Germany
S. Siebentritt
Affiliation:
Hahn-Meitner-Institut Berlin, Glienickerstr. 100, 14109 Berlin, Germany
M.Ch. Lux-Steiner
Affiliation:
Hahn-Meitner-Institut Berlin, Glienickerstr. 100, 14109 Berlin, Germany
Get access

Abstract

For solar cells based on CuGaSe2(CGS) absorber layers physical vapour deposition (PVD) was employed to deposit polycrystalline CGS thin films. Efficiencies up to 7.9% were achieved by applying a two-stage deposition process for absorber preparation. The high structural quality of the absorbers is shown. For highest cell efficiencies our standard recipe for the CdS buffer deposition had to be re-adapted. Voltage dependent spectral response measurements of the device in conjunction with absorption measurements of the absorber layers allow calculation of the minority carrier diffusion length, space charge region (SCR) width, absorber carrier concentration and the built-in voltage. The defect state density at the buffer/absorber interface is estimated. It can be shown that the benefical effect of the modified buffer deposition is mainly due to a reduced acceptor concentration at the absorber/buffer interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nadenau, V., Hariskos, D., and Schock, H. W.. In Ossenbrink, H. A., Helm, P., and Ehmann, H., editors, Proc. 14th Europ. Photovolt. Solar Energy Conf, page 1250, Bedford, UK, 1997. H.S. Stephens & Ass.Google Scholar
[2] Mickelsen, R. A., Chen, W. S. Appl. Phys. Lett 36, 371 (1980)Google Scholar
[3] Klenk, R., Walter, T., Schock, H. W., Cahen, D. Adv. Mat. 5, 114 (1993)Google Scholar
[4] Hecht, Z., “Optics”, Addison, New York (1974)Google Scholar
[5] Rau, U., Braunger, D., Herberholz, R., Schock, H. W., Guillemoles, J. F., Kronik, L., Cahen, D., J. Appl. Phys 86, 497 (1999)Google Scholar
[6] Klenk, R., Schock, H. W., Proc. 12th European Photovoltaic Solar Energy Conf., Amsterdam, 1584 (1994)Google Scholar
[7] Meier, N., Dylla, T., Fischer, D., Beck, M. E., Jäager-Waldau, A., Lux-Steiner, M. Ch., Proc. 16th European Photovoltaic Solar Energy Conf. (2000), in pressGoogle Scholar
[8] Nadenau, V., Schock, H. W., Krejci, M., Haug, F. J., Tiwari, A. N. and Kostorz, G., J. Appl. Phys. 85, 534 (1999)Google Scholar
[9] Vögt, M., Konstanzer Dissertationen Band 340, 1992, University of Konstanz Google Scholar
[10] Burgelmann, M., Nollet, P., Degrave, S., Thin Solid Films 361–362 (2000) 527 Google Scholar
[11] Wada, T., Hayashi, S., Hashimoto, Y., Nishiwaki, S., Sato, T., Nishitina, M., 2nd World Conf. on Photovolt. Energy Conv. ed. by Schmid, J., Ossenbrink, H. A., Helm, P., Ehmann, H., Dunlop, E. D. (E.C. Joint Res. Centre, Luxembourg 1998) p. 403 Google Scholar
[12] Jasenek, A., Rau, U., Nadenau, V., and Schock, W. W., J. Appl. Phys 87, 594 (2000)Google Scholar