Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T14:21:16.545Z Has data issue: false hasContentIssue false

Soft X-Ray Absorption Microscopy of Surfaces with Synchrotron Radiation

Published online by Cambridge University Press:  21 February 2011

G. R. Harp
Affiliation:
Dept. of Physics and Laboratory for Surface Studies, University of Wisconsin - Milwaukee, 1900 E. Kenwood Blvd., Milwaukee, WI 53211
B. P. Tonner
Affiliation:
Dept. of Physics and Laboratory for Surface Studies, University of Wisconsin - Milwaukee, 1900 E. Kenwood Blvd., Milwaukee, WI 53211
Get access

Abstract

As a spectroscopic technique, x-ray absorption near-edge structure (XANES) of core-levels using synchrotron radiation is in wide-spread use for the determination of the molecular composition of solid surfaces. A common detection method measures the yield of secondary electrons, which is proportional to the x-ray absorption coefficient for sufficiently high photon energy. In the experiments reported here, we show how the secondary electrons emitted as a result of photoabsorption can be used to generate a magnified image of the sample surface, with fundamental spatial limits determined by the deBroglie wavelength of the emitted electrons. Contrast in the secondary electron spatial distribution contains both topographical and chemical information about the sample surface. The use of tunable synchrotron radiation enables us to separate these contributions to the microscopic image, and to spatially resolve surface chemical composition as reflected in micro-XANES spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Metherell, A. J. F., Adv. in Optical and Electron Microscopy 4, 263 (1971).Google Scholar
2. Cazaux, J., Appl. of Surface Sci. 20, 457 (1985); Ultramicroscopy 12, 321 (1984).Google Scholar
3. Kirschner, J., in Springer Series in Optical Sciences 43, eds. Schmahl, G. and Rudolph, D. (Springer, Berlin, 1984), p. 308.Google Scholar
4. Tonner, B. P. and Harp, G. R., Rev. Sci. Instrum. 59, 853 (1988); J. Vac. Sci. Technol. A, to be published Feb. 1988.Google Scholar
5. Griffith, O. H. and Rempfer, G. F., Adv. in Optical and Electron Microscopy 10, 269 (1987).Google Scholar
6. Telieps, W. and Bauer, E., Surface Sci. 162, 163 (1985).Google Scholar
7. Gudat, W. and Kunz, C., Phys. Rev. Lett. 29, 169 (1972).CrossRefGoogle Scholar
8. Erbil, A., Cargill, G. S. III, Frahm, R. and Boehme, R. F., Phys. Rev. B. 37, 2450 (1988).Google Scholar
9. Henke, B., Smith, J. A. and Atwood, D. T., J. Appl. Phys. 48, 1852 (1977).Google Scholar
10. Hachenberg, O. and Brauer, W., Advances in Electronics and Electron Physics (Academic Press, New York, 1959), Vol.11, p. 413.Google Scholar
11. Durham, P., Comp. Phys. Comm. 25, 193 (1982); Sol. State Commun. 38, 159 (1981).Google Scholar
12. Stohr, J., Gland, J. L., Eberhardt, W., Outka, D., Madix, R. J., Sette, F., Koestner, R. J. and Dobler, U., Phys. Rev. Lett. 51, 2414 (1983).Google Scholar
13. Brown, F. C. and Rustgi, O. P., Phys. Rev. Lett. 28, 497 (1972).CrossRefGoogle Scholar
14. Bianconi, A., Surface Sci. 89, 41 (19790; A. Bianconi and R. S. Bauer, Surface Sci. 99, 76 (1980).CrossRefGoogle Scholar
15. Rubloff, G. W., Hofmann, K., Liehr, M. and Young, D. R., Phys. Rev. Lett. 58, 2379 (1987); R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues, and E. J. Van Loenen, Phys. Rev. Lett. 55, 2332 (1985).CrossRefGoogle Scholar
16. Polack, F. and Lowenthal, S., Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1984), vol.43, edited by Schmahl, G. and Rudolph, D., p. 251.Google Scholar