Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:53:08.586Z Has data issue: false hasContentIssue false

Soft Hydrothermal Synthesis of New Microporous Materials Based on Phosphate-Like Species

Published online by Cambridge University Press:  21 February 2011

D. Beltran
Affiliation:
UIBCM, Departament de Química Inorgánica, Facultat de Ciencies Químiques, Universität de Valencia. Dr. Moliner 50, 46100- Burjassot (Valencia), Spain.
M. D. Marcos
Affiliation:
UIBCM, Departament de Química Inorgánica, Facultat de Ciencies Químiques, Universität de Valencia. Dr. Moliner 50, 46100- Burjassot (Valencia), Spain.
P. Amoros
Affiliation:
UIBCM, Departament de Química Inorgánica, Facultat de Ciencies Químiques, Universität de Valencia. Dr. Moliner 50, 46100- Burjassot (Valencia), Spain.
M. Roca
Affiliation:
UIBCM, Departament de Química Inorgánica, Facultat de Ciencies Químiques, Universität de Valencia. Dr. Moliner 50, 46100- Burjassot (Valencia), Spain.
A. Beltran
Affiliation:
UIBCM, Departament de Química Inorgánica, Facultat de Ciencies Químiques, Universität de Valencia. Dr. Moliner 50, 46100- Burjassot (Valencia), Spain.
Get access

Abstract

Factors controlling hydrothermal synthetic procedures are not well understood. A good knowledge of the solution chemistry of precursor species is the best reference for the design of rational procedures. Examples of the predictive character of simple models in order to rationalize complex syntheses are discussed in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Stein, A., Keller, S. W. and Mallouk, T. E., Science, 259, 1558 (1993).Google Scholar
2 Davies, M. E. and Lobo, R.F, Chem Mat. 4, 762 (1992).Google Scholar
3 Marcos, M. D., Amorós, P., Beltrán, A. and Beltrán, D., Solid State Ionics, 63/65, 96 (1993).Google Scholar
4 Livage, J., Henry, M. and Sanchez, C., Prog. Solid St. Chem., 18, 259 (1988).Google Scholar
5 Brown, I. D., Acta Crystt., B48, 553 (1992).Google Scholar
6 Haushalter, R. C. and Mundi, L. A., Chem. Mater., 4, 31 (1992).Google Scholar
7 Haushalter, R. C., Wang, Z., Thompson, M. R., Zubieta, J. and O'Connor, C. J., Inorg. Chem., 32, 3966 (1993) and references therein.Google Scholar
8 Nenoff, T. M., Harrison, W. T. A., Gier, T. E., Calabrese, J. C. and Stucky, G. D., J. Solid State Chem., 107, 285 (1993).Google Scholar
9 Loiseau, T. and Ferey, G., J. Chem. Soc. Chem. Commun., 1197 (1992).Google Scholar
10 Marcos, M. D., Amorós, P., Beltrán, A. and Beltrán, D., Solid State Ionics, 63/65, 87 (1993).Google Scholar
11 Baes, C. F. Jr. and Mesmer, E. in The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
12 Johnson, G. K. and Schlemper, E. O., J. Am. Chem. Soc, 100, 3645 (1978).Google Scholar
13 Pope, M. T. in Heteropoly and Isopoly Oxometalates (Springer-Verlag, New York, 1983).Google Scholar
14 Zubieta, J., in Poly oxometalates: From Platonic Solids to Anti-Retroviral Activity, edited by Pope, M. T. and Muller, A. (Kluwer Academic Publ., Dordrecht, 1994) pp. 129-156.Google Scholar
15 Tachez, M. and Theobald, F., Acta Cryst., B36, 2873 (1980).Google Scholar
16 Müller, A., Penk, M., Rohlfing, R., Krickemeyer, E. and Döring, J., Angew. Chem. Int. Ed. Engl., 29,926(1990).Google Scholar
17 Klemperer, W. G., Marqua«, T. and Yaghi, O., Angew. Chem. Int. Ed. Engl., 31, 49 (1992).Google Scholar
18 Kang, H. Y., Lee, W. C., Wang, S. L. and Lii, K. H., Inorg. Chem., 31, 4743 (1992).Google Scholar
19 Lii, K. H., Wu, L. S. and Gau, H. M., Inorg. Chem., 32, 4153 (1993).Google Scholar
20 Haushalter, R. C., Soghomonian, V. and Zubieta, J., J. Solid State Chem., 105, 512 (1993).Google Scholar
21 Huan, G., Jacobson, A. J., Johnson, J. W. and Corcoran, E. W., Chem. Mater, 2, 91 (1990).Google Scholar
22 Bratch, S. G., J. Chem. Educ, 65, 35 (1988) and refs. therein; R. T. Sanderson, ibid., 65, 113(1988)Google Scholar
23 Amorós, P., Ibáñez, R., Martínez, E., Beltrán, A., Beltrán, D. and Villeneuve, G., Mat. Res. Bull., 24, 1347 (1989).Google Scholar
24 Teller, R. G., Blum, P., Kostiner, E. and Hriljac, J. A., J. Solid State Chem., 97, 10 (1992).Google Scholar
25 Ladwig, G., Z. Anorg. Allg. Chem., 338, 2 (1965).Google Scholar
26 Wang, S. L., Kang, H. Y., Cheng, C. Y. and Lii, K. H., Inorg. Chem., 30, 3496 (1991).Google Scholar
27 Chang, Y. D., Salta, J. and Zubieta, J., Angew. Chem. Int. Ed. Engl., 33, 325 (1994).Google Scholar
28 Lii, K. H. and Tsai, H. J., Inorg. Chem., 30, 446 (1991).Google Scholar
29 Lii, K. H. and Mao, I. F., J. Solid State Chem., 96,436 (1992).Google Scholar
30 Soghomonian, V., Chen, Q., Haushalter, R. C. and Zubieta, J., Chem. Mater., 5, 1595 (1993).Google Scholar
31 Soghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. and O'Connor, C. J., Science, 259, 1596(1993).Google Scholar
32 Soghomonian, V., Chen, Q., Haushalter, R. C. and Zubieta, J., Angew. Chem. Int. Ed. Engl., 32,610(1993).Google Scholar
33 Soghomonian, V., Chen, Q., Haushalter, R. C., Zubieta, J. and O'Connor, C. J., Chem. Mater., 5, 1690(1993).Google Scholar
34 Huan, G., Jacobson, A. J. and Day, V. W., Angew. Chem. Int. Ed. Engl., 4, 423 (1991).Google Scholar
35 Marcos, M. D., Amorós, P., Martínez, R., Beltrán, A. and Attfield, J. P., Chem. Mater., 5, 121 (1993)Google Scholar
36 Marcos, M. D., Amorós, P. and Le Bail, A., J. Solid State Chem., 107, 250 (1993).Google Scholar
37 von Scheming, Zeits. fur Anorg. and All. Chem. 330, 170, (1964).Google Scholar
38 Wells, A. F. in Structural Inorganic Chemistry 4th ed. (Oxford Univ. Press, Oxford (1975)).Google Scholar