Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-10-04T14:37:36.892Z Has data issue: false hasContentIssue false

Sn-Substituted LaNi5 Alloys For Metal Hydride Electrodes

Published online by Cambridge University Press:  15 February 2011

Margot L. Wasz
Affiliation:
Los Alamos National Laboratory, Center for Materials Science, Los Alamos, NM 87545
Ricardo B. Schwarz
Affiliation:
Los Alamos National Laboratory, Center for Materials Science, Los Alamos, NM 87545
Supramaniam Srinivasan
Affiliation:
Los Alamos National Laboratory, Center for Materials Science, Los Alamos, NM 87545
M. P. Sridhar Kumar
Affiliation:
Texas A&M University, Center for Electrochemical Systems and Hydrogen Research, College Station, TX 77843-3402
Get access

Abstract

Our research examines the efficacy of tin additions to LaNi5 in improving the hydrogen storage capacity of the material during charging/discharging. Alloys were prepared using high energy ball milling (mechanical alloying), a technique superior to arc casting for alloying elements with a wide disparity in melting points. Characterization by x-ray diffraction and Rietveld analysis shows that tin preferentially occupies the Ni(3g) sites in the LaNi5 structure, and the unit cell volume increases linearly with tin content to the maximum tin solubility of 7.33 atomic percent (LaNi4.56Sn0.44). We found that powders prepared by mechanical alloying and not exposed to air require no activation to induce hydrogen absorption. The hydrogen storage capacity in the gas and electrochemical phase was measured as a function of tin content. We found that with increasing tin, the plateau pressure decreases logarithmically, whereas the hydrogen storage capacity decreases linearly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 van Vucht, J. H. N., Kuijpers, F. A., and Bruning, H. C. A. M., Philips Res. Repts. 25, 133 (1970).Google Scholar
2 Van Mal, H. H., Buschow, K. H. J., and Miedema, A. R., J. Less Comm. Met. 35, 65 (1974).Google Scholar
3 Mendelsohn, M. H. and Gruen, D. M., Nature 269, 45 (1977).Google Scholar
4 Sakai, T., Muta, K., Miyamura, H., Kuriyama, N., and Ishikawa, H., in Hydrogen Storage Material, Batteries, and Electrochemistry, edited by Corrigan, D. A. and Srinivasan, S. (The Electrochemical Society, Pennington, New Jersey, 1992), p. 59.Google Scholar
5 Willems, J. J. G. and Buschow, K. H. J., J. Less-Comm. Met. 129, 13 (1987).Google Scholar
6 Lambert, S. W., Chandra, D., and Cathey, W. N., J. of Alloys and Compounds 187, 113 (1992).Google Scholar
7 Mendelsohn, M. H., Gruen, D. M., and Dwight, A., Inorganic Chem. 18, 3345 (1979), Mater. Res. Bull. 13, 1221 (1978).Google Scholar
8 Bowman, R. C. Jr., Luo, C. H., Ahn, C. C., a, and Fultz, B.., Alloys, J. and Comp. 217, 185 (1995).Google Scholar
9 Goodell, P. D., J. Less-Comm. Met. 99, 1 (1984).Google Scholar
10 Wasz, M. L., Desch, P. B., and Schwarz, R. B., submitted to Phil. Mag., 1995.Google Scholar
11 Wasz, M. L., Srinivasan, S., and Schwarz, R. B., unpublished results, Los Alamos National Laboratory, 1995.Google Scholar
12 Flanagan, T. B., Luo, W., and Clewley, J. D., in Hydrogen Storage Material. Batteries, and Electrochemistry, edited by Corrigan, D. A. and Srinivasan, S. (The Electrochemical Society, Pennington, New Jersey, 1992), p. 46.Google Scholar
13 Cohen, R. L., West, K. W., and Wermick, J. H., J. Less Comm. Met. 73, 273, (1980).Google Scholar
14 Percheron-Guégan, A., Lartigue, C., and Achard, J. C., J. Less-Comm. Met. 74, 1 (1980).Google Scholar
15 Gschneidner, K. A. Jr., Takeshita, T., Chung, Y., and McMasters, O. D., J. Phys. F: Met. Phys. 12, L1 (1982).Google Scholar
16 Ratnakumar, B. V., Witham, C., Fultz, B., and Halpert, G., J. Electrochem. Soc. 141, L89 (1994).Google Scholar