Article contents
Small Atom Diffusion and Breakdown on Stokes-Einstein Relation in the Supercooled Liquid State of Zr-Ti-Cu-Ni-Be Alloys
Published online by Cambridge University Press: 10 February 2011
Abstract
Be diffusivity data in the bulk metallic glass forming alloys Zr41.2Ti13.8Cu12.5Ni10Be22.5 and Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530K and 710K, extending up to 80K into the supercooled liquid states of the alloys. At the glass transition temperature, Tg, a change in temperature dependence of the data is observed in both alloys, and above Tg the diffusivity increases faster with temperature than below. The data in the supercooled liquid can be described by a modified Arrhenius expression containing the communal entropy of the supercooled liquid and based on a diffusion mechanism suggested earlier. The comparison with viscosity data in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5 reveals a breakdown of the Stokes- Einstein relation, whereas D(T) and η(T) follow a relation close to van den Beu-kel's. The breakdown of the Stokes- Einstein relation indicates a cooperative diffusion mechanism in the supercooled liquid state of the ZrTiCuNiBe alloys.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 1
- Cited by