Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T06:23:43.360Z Has data issue: false hasContentIssue false

Size-dependence of the Linear and Nonlinear Optical Properties of GaN Nanoclusters

Published online by Cambridge University Press:  01 February 2011

Andrew C. Pineda
Affiliation:
US Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Ave, SE, Bldg. 914, Kirtland Air Force Base, New Mexico 87117–5776 The Center for High Performance Computing and Department of Chemistry, The University of New Mexico, MSC01 1190, 1 University of New Mexico, Albuquerque, NM 87131–0001
Shashi P. Karna
Affiliation:
US Army Research Laboratory, Weapons and Materials Directorate, ATTN: AMSRD-ARL-WMBD, Bldg. 4600, Aberdeen Proving Ground, MD 21005–5069
Get access

Abstract

In this paper, we present the results of our first-principles quantum mechanical studies of the electronic structure, geometry, and linear and nonlinear optical (NLO) properties of tetrahedral Gam Nm (m=1, 4, 7, 17) atomic clusters. Our calculated results suggest that the linear and NLO properties both exhibit a strong dependence upon cluster size and shape (geometry). However, the size- and the geometry-dependences are more pronounced for the NLO properties than for the linear optical properties. For clusters containing equal numbers of Ga and N atoms, an open-structure with no network-forming ring has a much larger second-order NLO coefficient than a cluster with a closed ring structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Levine, B. F., Phys. Rev. Lett. 22, 787 (1969).Google Scholar
2. Phillips, J. Ch. and Van Vechten, J. A., Phys. Rev. 183, 709 (1969).Google Scholar
3. Schaefer, R., Schlecht, S., Woenckhaus, J., and Becker, J. A., Chem. Phys. Lett. 76, 471 (1996).Google Scholar
4. Kandalam, A.K., Blanco, M.A., and Pandey, R., J. Phys. Chem. B 105, 60806084 (2001); 106, 1945–1953 (2002).Google Scholar
5. Costales, A., Kandalam, A.K., Franco, R., and Pandey, R., J. Phys. Chem. B 106, 19401944 (2002).Google Scholar
6. Korambath, P. P., Singaraju, B. K., Karna, S. P., Int. J. Quant. Chem. 77, 563 (2000).Google Scholar
7. Korambath, P. P. and Karna, S. P., J. Phys. Chem. A 104, 48014804 (2000).Google Scholar
8. Lan, Y.-Z., Cheng, W.-D., Wu, D.-S., Li, X.-D., Zhang, H., Gong, Y.-J., Chem. Phys. Lett. 372, 645 (2003).Google Scholar
9. Vasiliev, I., Öğüt, S., and Chelikowsky, J.R., Phys. Rev B. 60, R8477 (1999); Phys. Rev. Lett. 78 (25), 4805–4808 (1997).Google Scholar
10. Natarajan, R. and Öğüt, S., Phys. Rev. B 67, 235326 (2003).Google Scholar
11. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., and Montgomery, J. A., J. Comput. Chem. 14, 13471363 (1993).Google Scholar
12. Stevens, W. J., Basch, H., Krauss, M., J. Chem. Phys. 81, 60266033 (1984).Google Scholar
Stephens, W. J., Basch, H., Krauss, M., Jasien, P., Can. J. Chem. 70, 612630 (1992).Google Scholar
Cundari, T. R., Stevens, W. J., J. Chem. Phys. 98 (7), 55555565 (1993).Google Scholar
13. Karna, S. P. and Dupuis, M., J. Comput. Chem. 12, 487504 (1991).Google Scholar
Karna, S. P., Chem. Phys. Lett. 214 (2), 186192 (1993).Google Scholar
14. Karna, S. P., Prasad, P. N., and Dupuis, M., J. Chem. Phys. 92, 7418 (1990).Google Scholar
15. Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., and Zubrilov, A., in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. edited by Levinshtein, M.E., Rumyantsev, S.L., and Shur, M.S., (John Wiley & Sons, Inc., New York, 2001), p. 130.Google Scholar