Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:53:09.687Z Has data issue: false hasContentIssue false

Single-step Photo fabrication of Kinoforms in use of Azobenzene-containing Polymer Films

Published online by Cambridge University Press:  11 February 2011

Shin Yasuda
Affiliation:
Corporate Research Center, Fuji Xerox Company, Ltd., 430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa 259–0157, Japan
Jiro Minabe
Affiliation:
Corporate Research Center, Fuji Xerox Company, Ltd., 430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa 259–0157, Japan
Katsunori Kawano
Affiliation:
Corporate Research Center, Fuji Xerox Company, Ltd., 430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa 259–0157, Japan
Tatsuya Maruyama
Affiliation:
Corporate Research Center, Fuji Xerox Company, Ltd., 430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa 259–0157, Japan
Hidenori Yamada
Affiliation:
New Business Center, Fuji Xerox Company, Ltd., 430 Sakai, Nakai-machi, Ashigarakami-gun, Kanagawa 259–0157, Japan
Get access

Abstract

We propose a new method of optically fabricating kinoforms using polyester containing cyanoazobenzene units in the side chain. This method utilizes the surface relief structures induced optically on the azopolymer films. Using a gray-tone amplitude mask with black and white lines as a spatial light modulator, we constructed the surface relief structures on the azopolymer films with an argon-ion laser beam (488nm). The relief depths constructed were deep enough to provide a wide range of visible light with a phase difference of 2π. In addition, irradiation on the azopolymer film with a spatially modulated light that had multilevel intensities inscribed the multilevel relief structure reflecting the intensity modulation. This property is applicable to the fabrication of diffractive optical elements, especially kinoforms, because the multilevel relief structure provides an incident light with phase modulation. We designed a phase pattern for a kinoform by computation and expressed it as a gray-tone amplitude mask. Irradiation on the film through the gray-tone mask with the pump beam inscribed a multilevel relief structure that diffracted an incident light to produce a desired image. The desired image appeared without the effect of the internal refractive index modulation of the film. We, therefore, confirmed a possibility of fabricating a kinoform with a multilevel relief structure on the azopolymer film. Since our fabrication method for kinoforms requires only exposure, it has a significant advantage over other techniques that require additional processes such as developing and etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lesem, L. B., Hirsch, P. M., and Jordan, J. A., IBM J. Res. Dev. 13, 150 (1969).Google Scholar
2. d'Auria, L., Huignard, J. P., Roy, A. M., and Spitz, E., Opt. Commun. 5, 232 (1972).CrossRefGoogle Scholar
3. Swanson, G. J. and Veldkmp, W. B., Proc. SPIE 883, 155 (1988).CrossRefGoogle Scholar
4. Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett. 66, 136 (1995).Google Scholar
5. Kim, D. Y., Tripathy, S. K., Li, L., and Kumar, J., Appl. Phys. Lett. 66, 1166 (1995).CrossRefGoogle Scholar
6. Barrett, C. J., Natansohn, A. L., and Rochon, P. L., J. Phys. Chem. 100, 8836 (1996).CrossRefGoogle Scholar
7. Barrett, C. J., Rochon, P. L., and Natansohn, A. L., J. Chem. Phys. 109, 1505 (1998).Google Scholar
8. Pederson, T. G., Johansen, P. M., Holme, N. C. R., Ramanujam, P. S., and Hvilsted, S., Phys. Rev. Lett. 80, 89(1998).Google Scholar
9. Kumar, J., Li, L., Jiang, X. L., Kim, D. Y., Lee, T. S., and Tripathy, S., Appl. Phys. Lett. 72, 2096 (1998).Google Scholar
10. Sumaru, K., Yamanaka, T., Fukuda, T. and Matsuda, H., Appl. Phys. Lett. 75, 1878 (1999).Google Scholar
11. Fukuda, T., Sumaru, K., Kimura, T. and Matsuda, H., J. Photochem. Photobio. A: Chem. 145, 35 (2001).Google Scholar
12. Tripathy, S., Kim, D. Y., Li, L. and Kumar, J., Chemtech 28, 34 (1998).Google Scholar
13. Viswanathan, N. K., Kim, D. Y., Bian, S., Williams, J., Liu, W., Li, L., Samuelson, L., Kumar, J. and Tripathy, S. K., J. Mater. Chem. 9, 1941 (1999).Google Scholar
14. Holme, N. C. R., Nikolova, L., Hvilsted, S., Rasmussen, P. H., Berg, R. H. and Ramanujam, P.S.: Appl. Phys. Lett. 74, 519 (1999).Google Scholar
15. Sato, M., Hayakawa, M., Nakagawa, K., Mukaida, K., and Fujiwara, H., Macromol. Rapid Commun. 15, 21 (1994).CrossRefGoogle Scholar
16. Jiang, X. L., Li, L., Kumar, J., Kim, D. Y., Shivshankar, V., Kumar, J., and Tripathy, S. K., Appl. Phys. Lett. 68, 2618(1996).Google Scholar
17. Bian, S., Li, L., Kumar, J., Kim, D. Y., Williams, J., and Tripathy, S. K., Appl. Phys. Lett. 73, 1817(1998).Google Scholar
18. Gerchberg, R. W. and Saxton, W. O., Optik 35, 237 (1972).Google Scholar
19. Gailagher, N. C. and Liu, B., Appl. Opt. 12, 2328 (1973).Google Scholar