Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:00:30.109Z Has data issue: false hasContentIssue false

A Simple and Effective Route to Annihilate Defects in Nanocrystalline SnO2 Thin Films Prepared by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

Zhiwen Chen
Affiliation:
[email protected], City University of Hong Kong, Department of Physics & Materials Science, 83 Tat Chee Avenue, Kowloon,Hong Kong, Hong Kong, N/A, China, People's Republic of, +852 21942820, +852 27887830
C. M. L. Wu
Affiliation:
[email protected], City University of Hong Kong, Department of Physics & Materials Science, Tat Chee Avenue, Kowloon Tong, Hong Kong, N/A, China, People's Republic of
C. H. Shek
Affiliation:
[email protected], City University of Hong Kong, Department of Physics & Materials Science, Tat Chee Avenue, Kowloon Tong, Hong Kong, N/A, China, People's Republic of
J. K. L. Lai
Affiliation:
[email protected], City University of Hong Kong, Department of Physics & Materials Science, Tat Chee Avenue, Kowloon Tong, Hong Kong, N/A, China, People's Republic of
Z. Jiao
Affiliation:
[email protected], Shanghai University, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai, 200444, China, People's Republic of
M. H. Wu
Affiliation:
[email protected], Shanghai University, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai, 200444, China, People's Republic of
Get access

Abstract

The microstructural defects of nanocrystalline SnO2 thin films prepared by pulsed laser deposition have been investigated using transmission electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy. Defects inside nanocrystalline SnO2 thin films could be significantly reduced by annealing the SnO2 thin films at 300 °C for 2 h. High-resolution transmission electron microscopy showed that stacking faults and twins were annihilated upon annealing. In particular, the edges of the SnO2 nanoparticles demonstrated perfect lattices free of defects after annealing. Raman spectra also confirmed that annealing the specimen was almost defect-free. By using thermal annealing, defect-free nanocrystalline SnO2 thin films can be prepared in a simple and practical way, which holds promise for applications as transparent electrodes and solid-state gas sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dai, Z. R., Gole, J. L., Stout, J. D., and Wang, Z. L., J. Phys. Chem. B 106, 1274 (2002).10.1021/jp013214rGoogle Scholar
2. Liu, Y. K., Zheng, C. L., Wang, W. Z., Yin, C. R., Wang, G. H., Adv. Mater. 13, 1883 (2001).10.1002/1521-4095(200112)13:24<1883::AID-ADMA1883>3.0.CO;2-Q3.0.CO;2-Q>Google Scholar
3. Xu, C. K., Xu, G. D., Liu, Y. K., Zhao, X. L., and Wang, G. H., Scripta Mater. 46, 789 (2002).10.1016/S1359-6462(02)00077-5Google Scholar
4. Pan, Z. W., Dai, Z. R., and Wang, Z. L., Science 291, 1947 (2001).10.1126/science.1058120Google Scholar
5. Dai, Z. R., Pan, Z. W., and Wang, Z. L., Solid State Commun. 118, 351 (2001).10.1016/S0038-1098(01)00122-3Google Scholar
6. Hu, J. Q., Ma, X. L., Shang, N. G., Xie, Z. Y., Wong, N. B., Lee, C. S., and Lee, S. T., J. Phys. Chem. B 106, 3823 (2002).10.1021/jp0125552Google Scholar
7. Maddalena, A., Maschio, R. D., Dire, S., and Raccanelli, A., J. Non-Cryst. Solids 121, 365 (1990).10.1016/0022-3093(90)90159-JGoogle Scholar
8. Shek, C. H., Lai, J. K. L., and Lin, G. M., NanoStuct. Mater. 11, 887 (1999).10.1016/S0965-9773(99)00387-6Google Scholar
9. Ghostagore, R. N., J. Electrochem. Soc. 125, 110 (1978).10.1149/1.2131373Google Scholar
10. Tarey, R. D. and Raju, T. A., Thin Solid Films 128, 181 (1995).Google Scholar
11. Minami, T., Nanto, H., and Takata, S., Jpn. J. Appl. Phys. 27, L287 (1988).10.1143/JJAP.27.L287Google Scholar
12. Zhu, J. J., Lu, Z. H., Aruna, S. T., Aurbach, D., and Gedanken, A., Chem. Mater. 12, 2557 (2000).10.1021/cm990683lGoogle Scholar
13. Schosser, V. and Wind, G., Proceedings of the 8th EC Photovoltaic Solar Energy Conference, Florence, Italy, p 998 (1998).Google Scholar
14. Khakani, M. A. El, Dolbec, R., Serventi, A. M., Horrillo, M. C., M. Trudeau, Saint-Jacques, R. G., Rickerby, D.G., and Sayago, I., Sens. Actuators B 77, 383 (2001).10.1016/S0925-4005(01)00758-4Google Scholar
15. Dolbec, R., Khakani, M. A. El, Serventi, A. M., Trudeau, M., and Saint-Jacques, R. G., Thin Solid Films 419, 230 (2002).10.1016/S0040-6090(02)00769-1Google Scholar
16. Dolbec, R., Khakani, M. A. El, Serventi, A. M., and Saint-Jacques, R. G., Sens. Actuators B 93, 566 (2003).Google Scholar
17. Serventi, A. M., Dolbec, R., Khakani, M. A. El, Saint-Jacques, R. G., and Rickerby, D. G., J. Phys. Chem. Solids 64, 2097 (2003).10.1016/S0022-3697(03)00262-2Google Scholar
18. Serrini, P., Briois, V., Horrillo, M. C., Traverse, A., and Manes, L., Thin Solid Films 304, 113 (1997).10.1016/S0040-6090(97)00219-8Google Scholar
19. Xu, C., Tamaki, J., Miura, N., and Yamazoe, N., Mater, J.. Sci. Lett. 8, 1092 (1989).10.1007/BF01730498Google Scholar
20. Bäuerle, , Laser Processing and Chemistry, (Springer, New York, 1996).10.1007/978-3-662-03253-4Google Scholar
21. Chen, Z. W., Lai, J. K. L., and Shek, C. H., Phys. Rev. B 70, 165314 (2004).Google Scholar
22. Chen, Z. W., Lai, J. K. L., Shek, C. H., and Chen, H. D.: J. Mater. Res. 18, 1289 (2003).10.1557/JMR.2003.0176Google Scholar
23. Chen, Z. W., Lai, J. K. L., Shek, C. H., and Chen, H. D., Appl. Phys. A 81, 959 (2005).10.1007/s00339-004-3099-7Google Scholar
24. Chen, Z. W., Lai, J. K. L., Shek, C. H., and Chen, H. D., Appl. Phys. A 81, 1073 (2005).Google Scholar
25. Chen, Z. W., Lai, J. K. L., and Shek, C. H., Chem. Phys. Lett. 422, 1 (2006).10.1016/j.cplett.2006.02.036Google Scholar
26. Chen, Z. W., Lai, J. K. L., and Shek, C. H., Appl. Phys. Lett. 88, 033115 (2006).Google Scholar
27. Chen, Z. W., Lai, J. K. L., and Shek, C. H., Appl. Phys. Lett. 89, 231902 (2006).10.1063/1.2399352Google Scholar
28. Chen, Z. W., Lai, J. K. L., and Shek, C. H., J. Solid State Chem. 178, 892 (2005).10.1016/j.jssc.2005.01.013Google Scholar
29. Nolsson, G. and Nelin, G., Phys. Rev. B 6, 3777 (1972).10.1103/PhysRevB.6.3777Google Scholar
30. Zhang, S. L., Zhu, B. F., Huang, F. M., Yan, Y., Shang, E. Y., Fan, S. S., and Han, W. G., Solid State Commun. 111, 647 (1999).10.1016/S0038-1098(99)00262-8Google Scholar