Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T18:25:40.448Z Has data issue: false hasContentIssue false

Silicon Thin Film Growth by Pulsed Plasma CVD under Near-Atmospheric Pressure

Published online by Cambridge University Press:  01 February 2011

Hirotatsu Kitabatake
Affiliation:
[email protected], Tohoku univ., CIR, Aramaki aza-Aoba aobaku, Sendai, Miyagi, 9808578, Japan, +81-22-217-5484, +81-22-217-5484
Maki Suemitsu
Affiliation:
[email protected], Tohoku univ., CIR, Japan
Setsuo Nakajima
Affiliation:
[email protected], Sekisui Chemicals Co. Ltd., Japan
Tsuyoshi Uehara
Affiliation:
[email protected], Sekisui Chemicals Co. Ltd., Japan
Yasutake Toyoshima
Affiliation:
[email protected], AIST, Energy Technology Research Institute, Japan
Get access

Abstract

Si Plasma-enhanced chemical vapor deposition (PECVD) at a near-atmospheric pressure (NAP) of 500 Torr has been conducted by using a pulsed-electric-field based NAP-PECVD system. At a growth temperature of 180°C, poly-Si films with a high Raman ratio of 7.4 are obtained on glass substrates, while epitaxial-like growth occurs when Si(100) substrates are employed, as confirmed by Raman-scattering spectroscopy, X-ray diffraction, and a cross-sectional transmission-electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yuasa, M. and Yara, T.: Japan Patent 3040358 (1997)Google Scholar
[2] Matsumoto, M., Shima, M., Okamoto, S., Murata, K., Tanaka, M., Kiyama, S., Kakiuchi, H., Yasutake, K., Yoshii, K., Endo, K. and Mori, Y.: Proc. 3rd World Conf. Photovoltaic Energy Conversion, Osaka 2003 1552 (Arisumi Printing Inc, 2004)Google Scholar
[3] Mori, Y., Yoshii, K., Yasutake, K., Kakiuchi, H., Ohmi, H., Wada, K.: Thin Solid Films 444 138 (2003)Google Scholar
[4] Kitabatake, H., Suemitsu, M., Uehara, T., Kitahata, H., Nakajima, S. and Toyoshima, Y.: Jpn. J. Appl. Phys. 44 683 (2005)Google Scholar
[5] Iqbal, Z. and Veprec, S.: J. Phys. C. 15 377. (1982)Google Scholar
[6] Doerner, N.F. and Brennan, S.: J. Appl. Phys. 63 126. (1988)Google Scholar
[7] Birks, L.S. and Friedman, H.: J. Appl. Phys. 17 687. (1946)Google Scholar
[8] Edelman, F., Chack, A., Weil, R., Beserman, R., Khait, Yu. L., Werner, P., Reck, B., Roschek, T., Carius, R., Wagner, H. and Beyer, W.: Solar Energy Mat. Solar Cells 77 125.(2003)Google Scholar
[9] Droz, C., Vallat-Sauvain, E., Bailat, J., Feitknecht, L., Meier, J., Niquille, X. and Shah, A.: Proc. 3rd World Conf. Photovoltaic Energy Conversion, Osaka 2003 1544 (Arisumi Printing Inc, 2004)Google Scholar
[10] Nickel, N. H., Anderson, G. B., Johnson, N. M., and Walker, J.: PHYSICAL REVIEW B 62 12(2000)Google Scholar
[11] Heyman, J.N., Ager, J.W. III, Haller, E.E., Johnson, N.M., Walker, J., and Doland, C.M.: PHYSICAL REVIEW B 45 23(1992)Google Scholar