Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:01:46.397Z Has data issue: false hasContentIssue false

Significance of Electrostatic Sorption in the Retardation of Radionuclides Released from a Repository

Published online by Cambridge University Press:  15 February 2011

H. Meier
Affiliation:
Staatliches Forschungsinstitut für Geochemie, D-96049 Bamberg, Germany
E. Zimmerhackl
Affiliation:
Staatliches Forschungsinstitut für Geochemie, D-96049 Bamberg, Germany
G. Zeitler
Affiliation:
Staatliches Forschungsinstitut für Geochemie, D-96049 Bamberg, Germany
P. Menge
Affiliation:
Staatliches Forschungsinstitut für Geochemie, D-96049 Bamberg, Germany
Get access

Abstract

Results of zeta potential measurements by electroosmosis with site-specific waters and sedimentary rocks from strata overlying the Gorleben salt dome are given and compared with sorption data of radionuclides obtained in batch experiments. It is shown that zeta potentials of sediment-groundwater systems in spite of being lower than the corresponding surface potentials are a sensitive indicator of interface reactions depending on the type of the sediment, ionic strength of waters, pH and temperature. Moreover, it is demonstrated that sorption data and, additionally, the influence of various parameters can often be understood by taking into account variable electrostatic forces between charged surfaces and nuclide species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schindler, P.W. and Stumm, W., in Aquatic Surface Chemistry, edited by Stumm, W. (Wiley-Interscience, New York, 1987), pp. 83110.Google Scholar
2. Dzombak, D.A. and Morel, F.M.M., Surface Complexation Modeling, Hydrous Ferric Oxide (Wiley-Interscience, New York, 1990).Google Scholar
3. Meier, H., Zimmerhackl, E., Zeitler, G. and Menge, P., Radiochim. Acta 52/53, 195200 (1991).Google Scholar
4. Warnecke, E., Tittel, G., Brenecke, P., Stier-Friedland, G. and Hollmann, A., in IAEA-SM- 289/49, 1986, p.401.Google Scholar
5. Maas, K.E. and Huf, E. (eds.), Proc. U.S./FRG Bilateral Workshop, Oct. 25, 1982 (Projektstab PSE, HMI Berlin, 1983).Google Scholar
6. Meier, H., Zimmerhackl, E., Hecker, W., Zeitler, G. and Menge, P., Radiochim. Acta 44/45, 239244 (1988).Google Scholar
7. Meier, H., Zimmerhackl, E., Zeitler, G., Menge, P. and Albrecht, W., Radiochim. Acta 58/59, 341346 (1992).Google Scholar
8. Stumm, W., Chemistry of the Solid-Water Interface (Wiley-lnterscience, New York, 1992).Google Scholar
9. Wehrli, B., Ibric, S. and Stumm, W., Colloids and Surfaces 51, 7788 (1990).Google Scholar
10. Evans, D.F. and Wennerström, H., The Colloidal Domain (VCH Verlagsgesellschaft, Weinheim, FRG, 1994), p. 117.Google Scholar
11. Chisholm-Brause, C.J., Brown, G.E. and Parks, G.A.; Physica B 158, 646648 (1989).Google Scholar
12. Serne, R.J.. in Radionuclide Sorption for the Safety Evaluation Perspective (Proc. NEA Workshop, Interlaken, Oct. 16–18, 1991) p. 237.Google Scholar
13. Legoux, Y., Blain, G., Guillaumont, R., Ouzounian, G., Brillard, L. and Hussonois, M., Radiochim. Acta 58/59, 211 (1992).Google Scholar
14. Serne, R.J. and Relyea, J.F., The Status of Radionuclide Sorption-Desorption Studies Performed by the WRIT Program (PNL-3997.UC-70, April 1982).Google Scholar
15. Kurbatov, M.H., Wood, G.B. and Kurbatov, J.D., J.Phys.Chem. 55, 11701182 (1951).Google Scholar
16. Bowers, A.R. and Huang, C.P., J Colloid Interface Sci. 110, 575 (1986).Google Scholar
17. Meier, H., Zimmerhackl, E., Zeitler, G. and Menge, P., presented at the 4th International Conference “Migration ’93”, Charleston, SC, 1993 (unpublished).Google Scholar