Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T07:35:47.790Z Has data issue: false hasContentIssue false

Self-Diffusion in Isotopically Controlled Heterostructures of Elemental and Compound Semiconductors

Published online by Cambridge University Press:  10 February 2011

H. Bracht
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California at Berkeley, Berkeley, CA 94720, U.S.A.
E. E. Haller
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California at Berkeley, Berkeley, CA 94720, U.S.A.
K. Eberl
Affiliation:
MPI für Festkörperforschung, 70569 Stuttgart, Germany
M. Cardona
Affiliation:
MPI für Festkörperforschung, 70569 Stuttgart, Germany
R. Clark-Phelps
Affiliation:
Charles Evans and Associates, Redwood City, CA 94063, U.S.A.
Get access

Abstract

We report self-diffusion studies of silicon between 855 and 1388°C in highly enriched epitaxial 28Si layers. Diffusion profiles of 30Si and 29Si are determined with high resolution secondary ion mass spectrometry (SIMS). The temperature dependence of the Si self-diffusion coefficients is accurately described with an activation enthalpy of 4.76 eV and a pre-exponential factor of 560 cm2s-1. The single activation enthalpy indicates that Si self-interstitials dominate self-diffusion over the whole temperature range investigated. Self- and interdiffusion in buried Al71GaAs/Al69GaAs/71GaAs isotope heterostructures with different Al composition is measured between 800 and 1160°C. Ga self-diffusion in AlGaAs and interdiffusion of Al and Ga at the AlGaAs/GaAs interface show that Ga diffusion decreases with increasing Al composition and that the interdiffusion coefficient depends linearly on Al concentration. Furthermore Al is found to diffuse more rapidly into GaAs than Ga diffuses in GaAs. The temperature dependence of Ga and Al diffusion in GaAs and of Ga diffusion in AlGaAs is described by a single activation enthalpy in the range of 3.6±0.1 eV, but by different pre-exponential factors. Differences found for Ga and Al diffusion in GaAs and for Ga diffusion in AlGaAs with different Al concentrations are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Peart, R.F., Phys. Status Solidi 15, K119 (1966).Google Scholar
[2] Masters, B.J. and Fairfield, J.M., Appl. Phys. Lett. 8 280 (1966).Google Scholar
[3] Fairfield, J.M. and Masters, B.J., J. Appl. Phys. 38 3148 (1967).Google Scholar
[4] Mayer, H.J., Mehrer, H., and Maier, K., Radiation Effects in Semiconductors 1976, IOP Conf. Proc. No. 31 (Institute of Physics, London, 1977), p. 186.Google Scholar
[5] Ghoshtagore, R.N., Phys. Rev. Lett. 16 890 (1966).Google Scholar
[6] Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 35 211 (1979).Google Scholar
[7] Kalinowski, L. and Seguin, R., Appl. Phys. Lett. 36 171 (1980).Google Scholar
[8] Hirvonen, J. and Anttila, A., Appl. Phys. Lett. 35 703 (1979).Google Scholar
[9] Demond, F.J., Kalbitzer, S., Mannsperger, H., and Damjantschitsch, H., Phys. Lett. 93A, 503 (1983).Google Scholar
[10] Stolwijk, N.A. and Bracht, H., Diffusion in Silicon, Germanium and their Alloys in Diffusion in Semiconductors and Non-Metallic Solids, ed. by Beke, D.L., Börnstein, Landolt, New Series, Group III, Vol.33, Pt. a (Springer, Berlin, 1998).Google Scholar
[11] Goldstein, B., Phys. Rev. 121 1305 (1961).Google Scholar
[12] Palfrey, H.D., Brown, M., and Willoughby, A.F.W., J. Electrochem. Soc. 128 2224 (1981).Google Scholar
[13] Tan, T.Y., You, H.M., Yu, S., Gösele, U.M., Jäger, W., Boeringer, D.W., Zypman, F., Tsu, R., and Lee, S.-T., J. Appl. Phys. 72 5206 (1992).Google Scholar
[14] Wang, L., Hsu, L., Haller, E.E., Erickson, J.W., Fischer, A., Eberl, K., and Cardona, M., Phys. Rev. Lett. 76 2342 (1996).Google Scholar
[15] Chang, L.L. and Koma, A., Appl. Phys. Lett. 29 138 (1976).Google Scholar
[16] Lee, J.-C., Schlesinger, T.E., and Kuech, T.F., J. Vac. Sci. Technol. B 5 1187 (1987).Google Scholar
[17] Guido, L.J., Holonyak, N. Jr , Hsieh, K.C., Kaliski, R.W., Plano, W.E., Burnham, R.D., Thornton, R.L., Epler, J.E., and Paoli, T.L., J. Appl. Phys. 61 1372 (1987).Google Scholar
[18] Olmsted, B.L. and Houde-Walter, S.N., Appl. Phys. Lett. 60 368 (1992).Google Scholar
[19] Ho, P.S. and Lewis, J.E., Surf. Sci. 55 335 (1976).Google Scholar
[20] Giese, A., Bracht, H., Walton, J.T., and Stolwijk, N.A., this proceeding.Google Scholar
[21] Compaan, K. and Haven, Y., Trans. Faraday Soc. 54 1498 (1958).Google Scholar
[22] Compaan, K. and Haven, Y., Trans. Faraday Soc. 52 786 (1956).Google Scholar
[23] Pandey, K.C., Phys. Rev. Lett. 57 2287 (1986).Google Scholar
[24] Pandey, K.C. and Kaxiras, E., Phys. Rev. Lett. 66 915 (1990).Google Scholar
[25] Blöchl, P.E., Smargiassi, E., Car, R., Laks, D.B., Andreoni, W., and Pantelides, S.T., Phys. Rev. Lett. 70 2435 (1993).Google Scholar
[26] Bracht, H., Stolwijk, N.A., and Mehrer, H., Phys. Rev. B 52 16542 (1995).Google Scholar
[27] Darken, L.S., Trans. Am. Inst. Min. Metall. Engrs. 175 184 (1948).Google Scholar
[28] Manning, J.R., Phys. Rev. 124 470 (1961).Google Scholar
[29] Wee, S.F., Chai, M.K., Homewood, K.P., and Gillin, W.P., J. Appl. Phys. 82 4842 (1997).Google Scholar
[30] Tan, T.Y., Gösele, U.M., and Yu, S., Crit. Rev. Solid State Phys. 17 47 (1991).Google Scholar
[31] Baraff, G.A. and Schlüter, M., Phys. Rev. Lett. 55 1327 (1985).Google Scholar
[32] Intrinsic properties of group IV elements and III-V, II- VI and I- VII compounds, edited by Madelung, O., Landolt-Börnstein, , New Series, Group III, Vol. 22, Pt. a (Springer, Berlin, 1989).Google Scholar