Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:39:23.619Z Has data issue: false hasContentIssue false

Selenium Sorption in a Sedimentary rock/saline Groundwater System and Spectroscopic Evidence

Published online by Cambridge University Press:  21 March 2011

X. Xia
Affiliation:
Waste Management and Fuel Cycle Research Center, Japan Nuclear Cycle Development Institute, Ibaraki 319-1194, Japan
G. Kamei
Affiliation:
Waste Management and Fuel Cycle Research Center, Japan Nuclear Cycle Development Institute, Ibaraki 319-1194, Japan
K. Iijima
Affiliation:
Waste Management and Fuel Cycle Research Center, Japan Nuclear Cycle Development Institute, Ibaraki 319-1194, Japan
M. Shibata
Affiliation:
Waste Management and Fuel Cycle Research Center, Japan Nuclear Cycle Development Institute, Ibaraki 319-1194, Japan
T. Ohnuki
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan
N. Kozai
Affiliation:
Advanced Science Research Center, Japan Atomic Energy Research Institute, Ibaraki 319-1195, Japan
Get access

Abstract

Sorption of selenium (Se) was studied by batch technique by using sedimentary rock samples andcorresponding saline groundwater from Horonobe underground research laboratory (URL)site under reducing condition. Spectroscopic analyses were performed by X-ray absorption near-edge structure (XANES) afterthe sorption experiments to identify the oxidation states of Se on the sedimentary rock. It issuggested thatthe dominant parameters affecting the Se sorption are iron-bearing minerals, especially exchangeable Fe and pyrite, and organic matters. Most of the Se sorbed on the sedimentary rock was Se(0) inthe case of natural saline groundwater, at least at relatively high Se concentration, while only part of the Se was Se(0) in caseof the synthetic groundwater, which contains no organic matters. Incorporationinto pyrite could be the sorption mechanism of Se(0).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Japan Nuclear Cycle Development Institute, JNC TN1410 2000–004, pp.V-31, V-77 (2000).Google Scholar
2. National Cooperative for the Disposal of Radioactive Waste, Project Opalinus clay, Technical Report 02-05, pp. 260262 (2002).Google Scholar
3. Shibutani, T., Yui, M., Yoshikawa, H., Sorption mechanism of Pu, Amand Se on sodium bentonite. In: A., Barkatt, R.A., van Konynenburg Eds., Scientific Basis for Nuclear Waste Management XVIII. Mat. Res. Soc. Proc. 333, 725 (1994).Google Scholar
4. Boult, K.A., Cowper, M.M., Heath, T.G., Sato, H., Shibutani, T., Yui, M., Journal of Contaminant Hydrology 35, 141150(1998).Google Scholar
5. Ticknor, K. V., McMurry, J., Radiochimica Acta, Vol. 73, pp.149156 (1996).Google Scholar
6. Tachi, Y., Shibutani, T., Sato, H. and Yui, M., Journal of Contaminant Hydrology, Vol. 35, pp. 7789 (1998).Google Scholar
7. Shibutani, T. et al. , PNC TN8410 94-395 (1994 in Japanese).Google Scholar
8. Ticknor, K. V., Harris, D. R. and Vandergraaf, T. T., AECL TR-453 (1988).Google Scholar
9. Fujikawa, Y., Fukui, M., Radiochimica Acta 76, 163172, (1997)Google Scholar
10. Conca, J. L. and Triay, I. R., LA-12957-MS (1996).Google Scholar
11. Ames, L. L., Salter, P. F., McGarrah, J. E. and Walker, B. A., Chemical Geology, Vol. 43. pp. 287302 (1984).Google Scholar
12. Kato, H., Mihara, M., Honda, A., Ohi, T., JNC Technical Report No. 14, pp. 171180 (2002 in Japanese).Google Scholar
13. Bradbury, M. H. and Sarott, F. A., NTB 93-08 (1994).Google Scholar
14. Shibutani, T., Shibata, M., Suyama, T., JNC TN8410 99-050 (1999).Google Scholar
15. Shibutani, T., Suyama, T., JNC TN8410 99-051 (1999).Google Scholar
16. Yamamoto, T., Shimo, M., Fujiwara, Y., Hattori, H., Nago, M., Tadokoro, T. and Kuji, M., JNC Technical Report, JNC TJ5420 2004-003 (2004 in Japanese).Google Scholar
17. Heron, J. G., Crouzet, C., Bourg, A. C. M., Christensen, T. H., Environ. Sci. Technol. 28, 16981705 (1994).Google Scholar
18. Poulton, S. W., Canfield, D. E., Chemical Geology 214, 209221 (2005).Google Scholar
19. Balistrieri, L. S. L.S., and Chao, T.T., Geochim. Cosmochim. Acta 54, 739751 (1990).Google Scholar
20. Velinsky, D.J., Cutter, G.A., Anal. Chim. Acta 235, 419425 (1990).Google Scholar
21. Masscheleyn, P. K., Delaune, R. D., and Patrick, W. H., Environment Science and Technology Vol.24, No.1, pp. 9196 (1990).Google Scholar
22. Lawniczak-Jablonska, K., Iwanowski, R. J., and Golacki, Z. et al. Physical Review B, Vo. 53, No.3, pp. 11191128 (1996).Google Scholar
23. Pickering, I. J., Brown, G. E., and Tokunaga, T. K., Environment Science and Technology Vol. 29, No.9, pp. 24562459 (1995).Google Scholar